中华眼底病杂志

中华眼底病杂志

进一步重视加强息肉样脉络膜血管病变分型及影响因素研究

查看全文

息肉样脉络膜血管病变(PCV)是以脉络膜异常分支状血管网及末端息肉样血管扩张病灶为特点的眼底疾病;根据其眼底表现、病变部位、影像检查特征以及疾病进程可将其分为不同类型。其中,根据眼底表现可分为出血型、渗出型;根据病变部位可分为黄斑型、视盘旁型、黄斑区以外型、混合型;根据吲哚青绿血管造影特征可分为1型、2型;根据疾病进程可分为早期型、晚期型。不同类型与老年性黄斑变性易感因子2/高温必需蛋白A1基因、C2、补体因子B基因、补体因子H、弹性蛋白基因等之间存在不同的相关性,其治疗反应及预后也存在较大差异。进一步重视并加强PCV临床特征归类分型研究,探讨不同类型的遗传特性、影响因素以及与治疗预后的关系,对于提高PCV诊断、鉴别诊断水平以及针对不同类型个体化治疗的有效性均具有重要意义。

Polypoidal choroidal vasculopathy (PCV) is a fundus disease characterized by choroidal anomalous branch vascular network and terminal polypoidal dilatation. According to its fundus feature, lesion location, imaging feature and disease progression, PCV can be divided into different types or stages. It can be divided into hemorrhage and exudation PCV according to the fundus features, into macular, peripapillary, periphery and mixed types according to the lesion locations. It can also be divided into type 1 and 2 according to the ICGA (indocyanine green angiography) manifestations, and can be classified as early stage and late stage according to disease progression. There were different correlations between different types of PCV and some risk genetic loci, such as ARMS2 (age-related macular degeneration factor 2)/ HTRA1 (high temperature essential protein A1) , C2, complement factor B, complement factor H, and elastin genes. The response to therapy and prognosis are also different between different types. It is important to further study the clinical classification of PCV, to explore the genetic characteristics, influencing factors and treatment or prognosis features of different types of PCV. The results will improve the differential diagnosis of PCV, and the effectiveness of individualized treatment.

关键词: 脉络膜疾病/分类; 脉络膜疾病/诊断; 脉络膜疾病/病因学; 述评

Key words: Choroid diseases/classification; Choroid diseases/diagnosis; Choroid diseases/etiology; Editorial

引用本文: 陈有信, 王琼. 进一步重视加强息肉样脉络膜血管病变分型及影响因素研究. 中华眼底病杂志, 2017, 33(3): 230-234. doi: 10.3760/cma.j.issn.1005-1015.2017.03.003 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Imamura Y, Engelbert M, Iida T, et al. Polypoidal choroidal vasculopathy: a review [J]. Surv Ophthalmol, 2010, 55(6): 501-515. DOI: 10.1016/j.survophthal.2010.03.004.
2. Kuo JZ, Wong TY, Ong FS.Genetic risk, ethnic variations and pharmacogenetic biomarkers in AMD and polypoidal choroidal vasculopathy[J]. Expert Rev Ophthalmol, 2014, 8(2): 127-140. DOI: 10.1586/eop.13.3.
3. Koh AH, Panel EP, Chen LJ, et al. Polypoidal choroidal vasculopathy: evidence-based guidelines for clinical diagnosis and treatment[J]. Retina, 2013, 33(4): 686-716. DOI: 10.1097/IAE.0b013e3182852446.
4. Byeon SH, Lee SC, Oh HS, et al. Incidence and clinical patterns of polypoidal choroidal vasculopathy in Korean patients[J]. Jpn J Ophthalmol, 2008, 52(1): 57-62. DOI: 10.1007/s10384-007-0498-2.
5. 文峰, 吴德正, 孙祖华, 等.息肉状脉络膜血管病变的分类研究[J]. 眼科学报, 2006, 22 (3): 160-165. DOI: 10.3969/j.issn.1000-4432.2006.03.009.Wen F, Wu DZ, Sun ZH, et al. The study of the classification on polypoidal choroidal vasculopathy[J]. Eye Science, 2006, 22(3): 160-165. DOI: 10.3969/j.issn.1000-4432.2006.03.009.
6. Cackett P, Wong D, Yeo I.A classification system for polypoidal choroidal vasculopathy[J]. Retina, 2009, 29(2): 187-191. DOI: 10.1097/IAE.0b013e318188c839.
7. Lim TH, Laude A, Tan CSH.Polypoidal choroidal vasculopathy: an angiographic discussion[J]. Eye, 2010, 24(3): 483-490. DOI: 10.1038/eye.2009.323.
8. Kawamura A, Yuzawa M, Mori R, et al. Indocyanine green angiographic and optical coherence tomographic findings support classification of polypoidal choroidal vasculopathy into two types[J]. Acta Ophthalmol, 2013, 91(6): 474-481. DOI: 10.1111/aos.12110.
9. Tanaka K, Nakayama T, Mori R, et al. Associations of complement factor H (CFH) and age-related maculopathy susceptibility 2(ARMS2) genotypes with subtypes of polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci, 2011, 52(10): 7441-7444. DOI: 10.1167/iovs.11-7546.
10. Yuzawa M, Mori R, Kawamura A.The origins of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol, 2005, 89(5): 602-607. DOI: 10.1136/bjo.2004.049296.
11. Tanaka K, Mori R, Kawamura A, et al. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol, 2017, 101(1): 51-55. DOI: 10.1136/bjophthalmol-2016-309264.
12. Freund KB, Zweifel SA, Engelbert M.Do we need a new classification for choroidal neovascularization in age-related macular degeneration[J]. Retina, 2010, 30(9): 1333-1349. DOI: 10.1097/IAE.0b013e3181e7976b.
13. Nakashizuka H, Mitsumata M, Okisaka S, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 4729-4737. DOI: 10.1167/iovs.08-2134.
14. Coscas G, Lupidi M, Coscas F, et al. Toward a specific classification of polypoidal choroidal vasculopathy: idiopathic disease or subtype of age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3187-3195. DOI: 10.1167/iovs.14-16236.
15. 白学伟, 李慧平, 盛迅伦.息肉状脉络膜血管病变的分型研究[J]. 国际眼科杂志, 2013, 13(3): 542-545. DOI: 10.3980/j.issn.1672-5123.2013.03.35.Bai XW, Li HP, Sheng XL.Polypoidal choroidal vasculopathy[J]. Int Eye Sci, 2013, 13(3): 542-545. DOI: 10.3980/j.issn.1672-5123.2013.03.35.
16. 曾仁攀, 文峰, 张雄泽, 等.息肉样脉络膜血管病变静止性息肉样灶的吲哚青绿血管造影特征分析[J]. 中华眼底病杂志, 2012, 28(5): 449-453. DOI: 10.3760/cma.j.issn.1005-1015.2012.05.005.Zeng RP, Wen F, Zhang XZ, et al. Characteristics of indocyanine green angiography in inactive polypoidal lesions of polypoidal choroidal vasculopathy[J]. Chin J Ocul Fundus Dis, 2012, 28(5): 449-453. DOI: 10.3760/cma.j.issn.1005-1015.2012.05.005.
17. 左成果, 文峰, 黄时洲, 等.息肉状脉络膜血管病变的吲哚菁绿眼底血管造影分型研究[J]. 中国实用眼科杂志, 2010, 28(5): 479-483. DOI: 10.3760/cma.j.issn.1006-4443.2010.05.016.Zuo CG, Wen F, Huang SZ, et al. Angiographic classification of polypoidal lesions in polypoidal choroidal vasculopathy on indocyanine green angiography[J]. Chin J Pract Ophthalmol, 2010, 28(5): 479-483. DOI: 10.3760/cma.j.issn.1006-4443.2010.05.016.
18. Bessho H, Honda S, Imai H, et al. Natural course and funduscopic findings of polypoidal choroidal vasculopathy in a Japanese population over 1 year of follow-up[J]. Retina, 2011, 31(8): 1598-1602. DOI: 10.1097/IAE.0b013e31820d3f28.
19. Tan CS, Ngo WK, Chen JP, et al. EVEREST study report 2: imaging and grading protocol, and baseline characteristics of a randomised controlled trial of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol, 2015, 99(5): 624-628. DOI: 10.1136/bjophthalmol-2014-305674.
20. Tan CS, Ngo WK, Lim LW, et al. A novel classification of the vascular patterns of polypoidal choroidal vasculopathy and its relation to clinical outcomes[J]. Br J Ophthalmol, 2014, 98(11): 1528-1533. DOI: 10.1136/bjophthalmol-2014-305059.
21. Okubo A, Hirakawa M, Ito M, et al. Clinical features of early and late stage polypoidal choroidal vasculopathy characterized by lesion size and disease duration[J]. Graefe’s Arch Clin Exp Ophthalmol, 2008, 246(4): 491-499. DOI: 10.1007/s00417-007-0680-8.
22. Kondo N, Honda S, Kuno S, et al. Coding variant I62V in the complement factor H gene is strongly associated with polypoidal choroidal vasculopathy[J]. Ophthalmology, 2009, 116(2): 304-310. DOI: 10.1016/j.ophtha.2008.11.011.
23. Gotoh N, Nakanishi H, Hayashi H, et al. ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Am J Ophthalmol, 2009, 147(6): 1037-1041. DOI: 10.1016/j.ajo.2008.12.036.
24. Gold B, Merriam JE, Zernant J, et al. Variation in factor B(BF) and complement component 2(C2) genes is associated with age-related macular degeneration[J]. Nat Genet, 2006, 38(4): 458-462. DOI: 10.1038/ng1750.
25. Nakata I, Yamashiro K, Yamada R, et al. Significance of C2/CFB variants in age-related macular degeneration and polypoidal choroidal vasculopathy in a Japanese population[J]. Invest Ophthalmol Vis Sci, 2012, 53(2): 794-798. DOI: 10.1167/iovs.11-8468.
26. Tanaka K, Nakayama T, Mori R, et al. Associations of complement factor B and complement component 2 genotypes with subtypes of polypoidal choroidal vasculopathy [J]. BMC Ophthalmol, 2014, 14: 83. DOI: 10.1186/1471-2415-14-83.
27. Yanagisawa S, Sakurada Y, Miki A, et al. The association of elastin gene variants with two angiographic subtypes of polypoidal choroidal vasculopathy[J/OL]. PLoS One, 2015, 10(3): 0120643[2015-03-16]. . DOI: 10.1371/journal. pone.0120643.
28. Sakurada Y, Kubota T, Imasawa M, et al. Role of complement factor H I62V and age-related maculopathy susceptibility 2 A69S variants in the clinical expression of polypoidal choroidal vasculopathy[J]. Ophthalmology, 2011, 118 (7): 1402-1407. DOI: 10.1016/j.ophtha.2010.12.010.
29. Miki A, Honda S, Kondo N, et al. The association of age-related maculopathy susceptibility 2 (ARMS2) and complement factor H (CFH) variants with two angiographic subtypes of polypoidal choroidal vasculopathy[J]. Ophthalmic Genet, 2013, 34(3): 146-150. DOI: 10.3109/13816810.2012.749288.
30. Jones A, Kumar S, Zhang N, et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice[J]. Proc Natl Acad Sci USA, 2011, 108(35): 14578-14583. DOI: 10.1073/pnas.1102853108.
31. Sandeep K, Zachary B, Ambati BK, et al. Angiographic features of transgenic mice with increased expression of human serine protease HTRA1 in retinal pigment epithelium[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3842-3850. DOI: 10.1167/iovs.13-13111.
32. Huang L, Zhang H, Cheng CY, et al. A missense variant in FGD6 confers increased risk of polypoidal choroidal vasculopathy[J]. Nat Genet, 2016, 48(6): 640-647. DOI: 10.1038/ng.3546.
33. Yoneyama S, Sakurada Y, Kikushima W, et al. Genetic factors associated with choroidal vascular hyperpermeability and subfoveal choroidal thickness in polypoidal choroidal vasculopathy[J]. Retina, 2016, 36(8): 1535-1541. DOI: 10.1097/IAE.0000000000000964.
34. Honda S, Miki A, Yanagisawa S, et al. Comparison of the outcomes of photodynamic therapy between two angiographic subtypes of polypoidal choroidal vasculopathy[J]. Ophthalmologica, 2014, 232(2): 92-96. DOI: 10.1159/000360308.
35. Cheng Y, Shi X, Qu J F, et al. Comparison of the 1-year outcomes of conbercept therapy between two different angiographic subtypes of polypoidal choroidal vasculopathy[J]. Chin Med J, 2016, 129(21): 2610-2616. DOI: 10.4103/0366-6999.192779.
36. Jeong S, Sagong M.Short-term efficacy of intravitreal aflibercept depending on angiographic classification of polypoidal choroidal vasculopathy[J/OL]. Br J Ophthalmol, 2016: E1[2016-09-05]. . DOI: 10.1136/bjophthalmol-2016-309144. [published online ahead of print].
37. Lin TC, Hwang DK, Lee FL, et al. Visual prognosis of massive submacular hemorrhage in polypoidal choroidal vasculopathy with or without combination treatment[J]. J Chin Med Assoc, 2016, 79(3): 159-165. DOI: 10.1016/j.jcma.2015.11.004.
38. Hata M, Tsujikawa A, Miyake M, et al. Two-year visual outcome of polypoidal choroidal vasculopathy treated with photodynamic therapy combined with intravitreal injections of ranibizumab[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 253(2): 189-197. DOI: 10.1007/s00417-014-2675-6.
39. Kang HM, Koh HJ, Lee SC.Baseline polyp size as a potential predictive factor for recurrence of polypoidal choroidal vasculopathy[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(8): 1519-1527. DOI: 10.1007/s00417-015-3241-6.
40. Suzuki M, Nagai N, Shinoda H, et al. Distinct responsiveness to intravitreal ranibizumab therapy in polypoidal choroidal vasculopathy with single or multiple polyps[J]. Am J Ophthalmol, 2016, 166: 52-59. DOI: 10.1016/j.ajo.2016.03.024.