中华眼底病杂志

中华眼底病杂志

内源性库欣综合征患者脉络膜大血管层高速血流密度的扫频光源光相干断层扫描血流成像分析

查看全文

目的对比观察内源性库欣综合征(ECS)患者与健康人脉络膜大血管层高速血流密度(FBFD)的差异。方法住院并确诊的连续ECS患者7例13只眼(ECS组)和年龄、性别、眼轴长度匹配的健康志愿者7名13只眼(对照组)纳入研究。采用扫频光源光相干断层扫描(SS-OCT)对黄斑区进行放射线扫描并测量中心凹下脉络膜厚度(SCT);采用扫频光源光相干断层扫描血管成像(SS-OCTA)对黄斑区进行3.0 mm×3.0 mm扫描,截取Bruch膜与脉络膜巩膜交界面之间1/2脉络膜厚度所在层面的SS-OCTA图像,所得灰度图经二值化处理转换为黑白图,计算脉络膜大血管层FBFD。结果ECS组、对照组受检者SCT分别为(394.7±77.7)、(332.1±68.1)μm;脉络膜大血管层FBFD分别为(76.35±14.46)%、(63.57±13.42)%。两组受检者SCT(t=2.923)、脉络膜大血管层FBFD(t=2.775)比较,差异均有统计学意义(P=0.008、0.010)。结论ECS患者脉络膜大血管层FBFD显著高于健康对照者。

ObjectiveTo compare the fast blood flow density (FBFD) of intermediate choroid between endogenous Cushing syndrome (ECS) patients and healthy control subjects.MethodsThirteen eyes of 7 eligible ECS patients (ECS group) and 13 eyes of 7 gender, age, axial length matched healthy volunteers (control group) were enrolled in this study. For each subject, macular radial scan with swept source optical coherence tomography (SS-OCT) was performed and subfoveal choroidal thickness (SCT) was measured. Then 3.0 mm×3.0 mm macular scan with SS-OCT angiography was performed, and selected blood flow image at intermediate choroid level or 1/2 SCT beneath Bruch membrane. The grayscale images were then binarized for the analysis of FBFD.ResultsThe SCT in ECS group was (394.7±77.7) μm, which was significantly thicker than (332.1±68.1) μm in control group (t=2.923, P=0.008). The FBFD of intermediate choroid in ECS group were (76.35±14.46)%, which were significantly greater than (63.57±13.42)% in control group (t=2.775, P=0.01).ConclusionECS patients had increased FBFD at intermediate choroid level compared with healthy controls.

关键词: 库欣综合征; 脉络膜; 局部血流; 体层摄影术,光学相干

Key words: Cushing syndrome; Choroid; Regional blood flow; Tomography, optical coherence

引用本文: 王尔茜, 夏松, 杨景元, 杜虹, 李东辉, 陈有信. 内源性库欣综合征患者脉络膜大血管层高速血流密度的扫频光源光相干断层扫描血流成像分析. 中华眼底病杂志, 2017, 33(4): 400-403. doi: 10.3760/cma.j.issn.1005-1015.2017.04.017 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Raff H, Carroll T. Cushing’s syndrome: from physiological principles to diagnosis and clinical care[J]. J Physiol, 2015, 593(3): 493-506. DOI: 10.1113/jphysiol.2014.282871.
2. Karaca C, Karaca Z, Kahraman N, et al. Is there a role of acth in increased choroidal thickness in cushing syndrome?[J]. Retina, 2017, 37(3): 536-543. DOI: 10.1097/IAE.0000000000001198.
3. Carvalho-Recchia CA, Yannuzzi LA, Negrão S, et al. Corticosteroids and central serous chorioretinopathy[J]. Ophthalmology, 2002, 109(10): 1834-1837.
4. 李略, 李东辉, 杨治坤, 等, 中心性浆液性脉络膜视网膜病变眼底血管造影及脉络膜厚度分析[J].中华眼科杂志, 2012, 48 (10): 878-882. DOI: 10.3760/cma.j.issn.0412-4081.2012.10.005.Li L, Li DH, Yang ZK, et al. Analysis of fundus fluorescein angiography, indocyanine green angiography and choroidal thickness in central serous chorioretinopathy[J].Chin J Ophthalmol, 2012, 48(10): 878-882. DOI: 10.3760/cma.j.issn.0412-4081.2012.10.005.
5. Falavarjani KG, Sarraf D. Optical coherence tomography angiography of the retina and choroid; current applications and future directions[J]. J Curr Ophthalmol, 2017, 29(1): 1-4. DOI: 10.1016/j.joco.2017.02.005.
6. Chan SY, Wang Q, Wei WB, et al. Optical coherence tomographic angiography in central serous chorioretinopathy[J]. Retina, 2016, 36(11): 2051-2058. DOI: 10.1097/IAE.0000000000001064.
7. Shinojima A, Kawamura A, Mori R, et al. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy[J]. Ophthalmologica, 2016, 236(2): 108-113. DOI: 10.1159/000448436.
8. Costanzo E, Cohen SY, Miere A, et al. Optical coherence tomography angiography in central serous chorioretinopathy[J/OL].J Ophthalmol, 2015, 2015: 134783 [2015-11-08]. http://dx.doi.org/10.1155/2015/134783. DOI: 10.1155/2015/134783.
9. Nicolo M, Rosa R, Musetti D, et al. Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2002-2010. DOI: 10.1167/iovs.17-21417.
10. Otsuka Y. Problems with spinal dysraphism as a disease related to spina bifida[J]. Jikken Dobutsu, 1979, 28(4): 601-603.
11. Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography [J].Int J Retina Vitreous, 2016, 2: 25. DOI: 10.1186/s40942-016-0050-y.
12. Kuroda Y, Ooto S, Yamashiro K, et al. Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography[J]. Am J Ophthalmol, 2016, 169: 199-207. DOI: 10.1016/j.ajo.2016.06.043.
13. Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases[J]. Clin Exp Ophthalmol, 2016, 44(5): 388-399. DOI: 10.1111/ceo.12683.
14. Abalem MF, Machado MC, Santos HN, et al. Choroidal and retinal abnormalities by optical coherence tomography in endogenous cushing’s syndrome[J]. Front Endocrinol (Lausanne), 2016, 7: 154. DOI: 10.3389/fendo.2016.00154.
15. Harb E, Hyman L, Gwiazda J, et al. Choroidal Thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort[J]. Am J Ophthalmol, 2015, 160 (1): 62-71. DOI: 10.1016/j.ajo.2015.04.018.
16. Gupta P, Saw SM, Cheung CY, et al. Choroidal thickness and high myopia: a case-control study of young Chinese men in Singapore[J]. Acta Ophthalmol, 2015, 93(7): 585-592. DOI: 10.1111/aos.12631.