中华眼底病杂志

中华眼底病杂志

正确认识近视脉络膜新生血管的临床特征提高其诊断治疗及规范随访水平

查看全文

近视脉络膜新生血管(MCNV)是引起亚洲国家青壮年视力损害的主要原因。我国病理性近视(PM)人口基数大,MCNV造成的社会、经济负担及个人心理压力严重,已成为一个新的公共卫生问题。该病目前发生机制未明,患者常以视物变形为主诉,病灶小、渗出少,发展缓慢但难以自限。其自然病程、临床特征及治疗应答与老年性黄斑变性(AMD)等疾病有较大差异。抗血管内皮生长因子(VEGF)药物治疗是业界公认的一线治疗方法,但其治疗不宜简单借鉴、移植AMD等疾病脉络膜新生血管的治疗方案、疗效判断方法、再治疗指标和随访方案。要全面应对这一新的公共卫生问题带来的挑战,亟待明确PM的概念及诊断标准,正确认识MCNV的临床特征,探讨最佳抗VEGF药物治疗方案,还应加强疾病宣教,注重规范随访。

Myopic choroidal neovascularization (MCNV) is one of the main reasons of vision loss in working population in Asia, which has brought economical and social-psychological burdens with high incidence in China, The precise pathogenesis of MCNV is unclear. Metamorphosia is the main reported symptom in these patients. The lesions were usually with smaller area, less leakage and relatively slow progression. Currently, intravitreal anti-vascular endothelial growth factor agents are now the established standard of care for MCNV, which was a major breakthrough in the treatment of MCNV achieving visual acuity improvement. Since the natural history, clinical features and therapy response of this disease is significant different from that in choroidal neovascularization secondary to age-related macular degeneration, the treatment dosing, frequency, retreatment criteria and the follow-up interval should been considerately. Facing the myopia boom in China, there is a need for the development of a precise definition and a more detailed classification for pathogenic myopia, optimize the outcome assessment and follow-up strategy, which should benefit to the further basically and clinical studies.

关键词: 近视,退行性/诊断; 近视,退行性/并发症; 脉络膜新生血管化/治疗; 述评

Key words: Myopia, degenerative/diagnosis; Myopia, degenerative/complications; Choroidal neovascularization/therapy; Editorial

引用本文: 丁小燕, 陈冲林. 正确认识近视脉络膜新生血管的临床特征提高其诊断治疗及规范随访水平. 中华眼底病杂志, 2017, 33(6): 564-568. doi: 10.3760/cma.j.issn.1005-1015.2017.06.002 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Willis J, Morse L, Vitale S, et al. Treatment patterns for myopic choroidal neovascularization in the united states: analysis of the IRIS registry[J]. Ophthalmology, 2017, 124(7): 935-943. DOI: 10.1016/j.ophtha.2017.02.018..
2. Wong TY, Ohno-Matsui K, Leveziel N, et al. Myopic choroidal neovascularisation: current concepts and update on clinical management[J]. Br J Ophthalmol, 2015, 99(3): 289-296. DOI: 10.1136/bjophthalmol-2014-305131.
3. Ladaique MDirani A, Ambresin A. Long-term follow-up of choroidal neovascularization in pathological myopia treated with intravitreal ranibizumab[J]. Klin Monbl Augenheilkd, 2015, 232(4): 542-547. DOI: 10.1055/s-0035-1545817.
4. Neelam K, Cheung CM, Ohno-Matsui K, et al. Choroidal neovascularization in pathological myopia[J]. Prog Retin Eye Res, 2012, 31(5): 495-525. DOI: 10.1016/j.preteyeres.2012.04.001.
5. Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia[J]. Br J Ophthalmol, 2003, 87(5): 570-573.
6. Wakabayashi T, Ikuno Y. Choroidal filling delay in choroidal neovascularisation due to pathological myopia[J]. Br J Ophthalmol, 2010, 94(5): 611-615. DOI: 10.1136/bjo.2009.163535.
7. Wang S, Wang Y, Gao X, et al. Choroidal thickness and high myopia: a cross-sectional study and meta-analysis[J]. BMC Ophthalmol, 2015, 15: 70. DOI: 10.1186/s12886-015-0059-2.
8. Chen W, Song H, Xie S, et al. Correlation of macular choroidal thickness with concentrations of aqueous vascular endothelial growth factor in high myopia[J]. Curr Eye Res, 2015, 40(3): 307-313. DOI: 10.3109/02713683.2014.973043.
9. Harb E, Hyman L, Gwiazda J, et al. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort[J]. Am J Ophthalmol, 2015, 160(1): 62-71. DOI: 10.1016/j.ajo.2015.04.018.
10. Rong SS, Chen LJ, Pang CP. Myopia genetics-the asia-pacific perspective[J]. Asia Pac J Ophthalmol (Phila), 2016, 5(4): 236-244. DOI: 10.1097/APO.0000000000000224.
11. Miyake M, Yamashiro K, Nakanishi H, et al. Evaluation of pigment epithelium-derived factor and complement factor I polymorphisms as a cause of choroidal neovascularization in highly myopic eyes[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 4208-4212. DOI: 10.1167/iovs.13-12280.
12. Leveziel N, Yu Y, Reynolds R, et al. Genetic factors for choroidal neovascularization associated with high myopia[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 5004-5009. DOI: 10.1167/iovs.12-9538.
13. Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study[J]. Ophthalmology, 2009, 116(1): 57-65. DOI: 10.1016/j.ophtha.2008.10.018.
14. Li X, Xu G, Wang Y, et al. Safety and efficacy of conbercept in neovascular age-related macular degeneration: results from a 12-month randomized phase 2 study: AURORA study[J]. Ophthalmology, 2014, 121(9): 1740-1747. DOI: 10.1016/j.ophtha.2014.03.026.
15. Verteporfin in Photodynamic Therapy (VIP) Study Group.Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin: 1-year results of a randomized clinical trial--VIP report no. 1[J]. Ophthalmology, 2001, 108(5): 841-852. DOI: 10.1016/S0161-6420(01)00544-9.
16. Blinder KJ, Blumenkranz MS, Bressler NM, et al. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3[J]. Ophthalmology, 2003, 110(4): 667-673. DOI: 10.1016/S0161-6420(02)01998-X.
17. Tufail A, Narendran N, Patel PJ, et al. Ranibizumab in myopic choroidal neovascularization: the 12-month results from the REPAIR study[J]. Ophthalmology, 2013, 120(9): 1944-1945. DOI: 10.1016/j.ophtha.2013.06.010.
18. Wolf S, Balciuniene VJ, Laganovska G, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia[J]. Ophthalmology, 2014, 121(3): 682-692. DOI: 10.1016/j.ophtha.2013.10.023.
19. Mathieu B, Isaico R, Ramel JC, et al. [Treatment of high myopic choroidal neovascularisation with intravitreal bevacizumab][J]. J Fr Ophtalmol, 2014, 37(1): 54-57. DOI: 10.1016/j.jfo.2013.07.006.
20. Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up[J]. Ophthalmology, 2003, 110(7): 1297-1305. DOI: 10.1016/S0161-6420(03)00461-5.
21. Keane PA, Liakopoulos S, Chang KT, et al. Comparison of the optical coherence tomographic features of choroidal neovascular membranes in pathological myopia versus age-related macular degeneration, using quantitative subanalysis[J]. Br J Ophthalmol, 2008, 92(8): 1081-1085. DOI: 10.1136/bjo.2008.138891.
22. Querques G, Corvi F, Querques L, et al. Optical coherence tomography angiography of choroidal neovascularization secondary to pathologic myopia[J]. Dev Ophthalmol 2016, 56(: 101-106. DOI: 10.1159/000442800.
23. Baba T,Ohno-Matsui K, Yoshida T, et al. Optical coherence tomography of choroidal neovascularization in high myopia[J]. Acta Ophthalmol Scand, 2002, 80(1): 82-87.
24. Chhablani J, Deepa MJ, Tyagi M, et al. Fluorescein angiography and optical coherence tomography in myopic choroidal neovascularization[J]. Eye (Lond) , 2015, 29(4): 519-524, doi: 10.1038/eye.2014.345.
25. Hampton GR, Kohen D, Bird AC. Visual prognosis of disciform degeneration in myopia[J]. Ophthalmology, 1983, 90(8): 923-926.
26. Parodi MB, Iacono P, Papayannis A, et al. Laser photocoagulation, photodynamic therapy, and intravitreal bevacizumab for the treatment of juxtafoveal choroidal neovascularization secondary to pathologic myopia[J]. Arch Ophthalmol, 2010, 128(4): 437-442. DOI: 10.1001/archophthalmol.2009.408.
27. Ruiz-Moreno JM, Lopez-Galvez MI, Donate J, et al. Myopic choroidal neovascularization[J]. Ophthalmology, 2011, 118(12): 2521-2523. DOI: 10.1016/j.ophtha.2011.07.029.
28. Baba T, Kubota-Taniai M, Kitahashi M, et al. Two-year comparison of photodynamic therapy and intravitreal bevacizumab for treatment of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2010, 94(7): 864-870. DOI: 10.1136/bjo.2009.166025.
29. Ikuno Y, Jo Y, Hamasaki T, et al. Ocular risk factors for choroidal neovascularization in pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3721-3725. DOI: 10.1167/iovs.09-3493.
30. Yoon JU, Byun YJ, Koh HJ. Intravitreal anti-VEGF versus photodynamic therapy with verteporfin for treatment of myopic choroidal neovascularization[J]. Retina, 2010, 30(3): 418-424. DOI: 10.1097/IAE.0b013e3181bd2fe4.
31. Figurska M, Stankiewicz A.Anty-VEGF therapy in the treatment of myopic macular choroidal neovascularization--cases report[J]. Klin Oczna, 2008;110(10-12): 387-391.
32. Ruiz-Moreno JM, Arias L, Montero JA, et al. Intravitreal anti-VEGF therapy for choroidal neovascularisation secondary to pathological myopia: 4-year outcome[J]. Br J Ophthalmol, 2013, 97(11): 1447-1450. DOI: 10.1136/bjophthalmol-2012-302973.
33. Ikuno Y, Sayanagi K, Soga K, et al. Intravitreal bevacizumab for choroidal neovascularization attributable to pathological myopia: one-year results[J]. Am J Ophthalmol, 2009, 147(1): 94-100. DOI: 10.1016/j.ajo.2008.07.017.
34. Mones JM, Amselem L, Serrano A, et al. Intravitreal ranibizumab for choroidal neovascularization secondary to pathologic myopia: 12-month results[J]. Eye (Lond), 2009, 23(6): 1275-1280. doi: 10.1038/eye.2009.88.
35. Ikuno Y, Ohno-Matsui K, Wong TY, et al. intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study[J]. Ophthalmology, 2015, 122(6): 1220-1227. DOI: 10.1016/j.ophtha.2015.01.025.
36. Inhoffen W, Ziemssen F. Morphological features of myopic choroidal neovascularization: differences to neovascular age-related macular degeneration[J]. Ophthalmologe, 2012, 109(8): 749-757. DOI: 10.1007/s00347-011-2498-3.
37. Gharbiya M, Allievi F, Mazzeo L, et al. Intravitreal bevacizumab treatment for choroidal neovascularization in pathologic myopia: 12-month results[J]. Am J Ophthalmol, 2009, 147(1): 84-93. DOI: 10.1016/j.ajo.2008.07.022.
38. Niwa Y, Sawada O, Miyake T, et al. Comparison between one injection and three monthly injections of intravitreal bevacizumab for myopic choroidal neovascularization[J]. Ophthalmic Res, 2012, 47(3): 135-140. DOI: 10.1159/000330499.
39. Ruiz-Moreno JM, Montero JA, Arias L, et al. Three versus one intravitreal bevacizumab injections as initial protocol to treat myopic choroidal neovascularization[J]. Acta Ophthalmol, 2012, 90(1): 82-83. DOI: 10.1111/j.1755-3768.2010.02070.x.
40. Wakabayashi T, Ikuno Y, Gomi F.Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia[J]. Retina, 2011, 31(5): 880-886. DOI: 10.1097/IAE.0b013e3181f2a293.
41. Fung AE, Lalwani GA, Rosenfeld PJ, et al. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2007, 143(4): 566-583. DOI: 10.1016/j.ajo.2007.01.028.
42. Wang S, Peng Q, Zhao P. SD-OCT use in myopic retinoschisis pre- and post-vitrectomy[J]. Optom Vis Sci , 2012, 89(5): 678-683. DOI: 10.1097/OPX.0b013e31824eeaed.
43. Introini U, Casalino G, Querques G, et al. Spectral-domain OCT in anti-VEGF treatment of myopic choroidal neovascularization[J]. Eye (Lond) , 2012, 26(7): 976-982. DOI: 10.1038/eye.2012.75.