中华眼底病杂志

中华眼底病杂志

萎缩型老年性黄斑变性患眼地图样萎缩面积的多模态成像定量分析

查看全文

目的 观察萎缩型老年性黄斑变性(AMD)患眼地图样萎缩(GA)面积的多模态成像定量分析结果。 方法 临床确诊为萎缩型AMD GA的27例患者32只眼纳入研究。其中,男性14例17只眼,女性13例15只眼。年龄64~83岁,平均年龄(74.4±7.6)岁。所有患眼均行眼底彩色照相(CFP)、眼底自身荧光(FAF)、荧光素眼底血管造影(FFA)及频域光相干断层扫描(OCT)检查。由两名眼科医师在相互独立、互不干扰的情况下分别对上述多模态成像图像进行精准定量分析。应用Image J 1.49b版软件分别描绘CFP、FAF、FFA图像GA病灶轮廓并计算病灶面积。当FAF绝对弱荧光病灶周围伴有强荧光或斑驳样荧光难以确定病灶边界或难以判断黄斑中心凹是否受累时,用频域OCT辅助确定病灶边界及黄斑区受累情况。两名眼科医师之间多模态成像结果的一致性检验采用Bland-Altman分析。 结果 Bland-Altman分析结果显示,两名眼科医师之间多模态成像结果的一致性较高,其变异范围为FFA<FAF<CFP。CFP、FAF、FFA检查测得患眼平均GA面积分别为(19.81±13.03)、(21.50±13.61)、(23.10±14.29)mm2。CFP、FAF、FFA检查测得平均GA面积比较,差异无统计学意义(F=0.466,P=0.629)。 结论 FFA测得GA面积最大,FAF次之,CFP最小;但三者之间的差异无统计学意义。

Objective To compare and quantitatively analyse the different characteristics of multimodal imaging of geographic atrophy (GA) in age-related macular degeneration (AMD). Methods The study included multimodel images of 32 eyes of 27 patients with GA secondary to AMD. There were 14 males (17 eyes) and 13 females (15 eyes). The age ranged from 64 to 83 years, with the mean age of (74.4±7.6) years. All eyes were examined by color fundus photography (CFP), fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) and spectral domain optical coherence tomography (OCT). Using image J software, two trained ophthalmologists, operating in masked fashion, graded the area of lesions of CFP, FAF and FFA independently and compared the sizes of GA area. OCT was performed to confirm the border of lesion when FAF difficult to be determined. The results consistency of two ophthalmologists was analyzed by Bland-Altman. Results The results consistency was high of two ophthalmologists, with the variation range of FFA<FAF<CFP. The GA area of CFP, FAF and FFA were (19.81±13.03), (21.50±13.61), (23.10±14.29) mm2. The difference of GA area between three multimodel images was statistically significant (F=0.466, P=0.629). Conclusion The mean size of GA measured by CFP, FAF and FFA showed no statistical difference.

关键词: 黄斑变性; 地图样萎缩; 荧光素血管造影术; 体层摄影术,光学相干

Key words: Macular degeneration; Geographic atrophy; Fluorescein angiography; Tomography, optical coherence

引用本文: 田梦, 李爽, 王敬敬, 王康. 萎缩型老年性黄斑变性患眼地图样萎缩面积的多模态成像定量分析. 中华眼底病杂志, 2017, 33(6): 580-583. doi: 10.3760/cma.j.issn.1005-1015.2017.06.006 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in year 2002[J]. Bull World Health Organ, 2004, 82(11): 844-851. DOI: 10.1016/S0042-96862004001100009.
2. Chakravarthy U, Harding SP, Rogers CA, et al. Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial[J]. Lancet, 2013, 382(9900): 1258-1267. DOI: 10.1016/S0140-6736(13)61501-9.
3. Grunwald JE, Daniel E, Huang J, et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2014, 121(1): 150-161. DOI: 10.1016/j.ophtha.2013.08.015.
4. Sikorav A, Semoun O, Zweifel S, et al. Prevalence and quantification of geographic atrophy associated with newly diagnosed and treatment-naïve exudative age-related macular degeneration[J]. Br J Ophthalmol, 2017, 101(4): 438-444. DOI: 10.1136/bjophthalmol-2015-308065.
5. Biarnés M, Arias L, Alonso J, et al. Increased fundus autofluorescence and progression of geographic atrophy secondary to age-related macular degeneration: the GAIN study[J]. Am J Ophthalmology, 2015, 160(2): 345-543. DOI: 10.1016/j.ajo.2015.05.009.
6. Simader C, Sayegh RG, Montuoro A, et al. A longitudinal comparison of spectral-domain optical coherence tomography and fundus autofluorescence in geographic atrophy[J]. Am J Ophthalmol, 2014, 158(3): 557-566. DOI: 10.1016/j.ajo.2014.05.026.
7. Danis RP, Domalpally A, Chew EY, et al. Methods and reproducibility of grading optimized digital color fundus photographs in the Age-related Eye Disease Study 2 (AREDS2 report number 2)[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4848-4854. DOI: 10.1167/iovs.13-11804.
8. Nunes RP, Gregori G, Yehoshua Z, et al. Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina[J]. Ophthalmic Surg Lasers Imaging Retina, 2013, 44(4): 344-359. DOI: 10.3928/23258160-20130715-06.
9. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, et al. Comparison of geographic atrophy growth rates using different imaging modalities in the COMPLETE study[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(4): 413-422. DOI: 10.3928/23258160-20150422-03.
10. Domalpally A, Danis R, Agrón E, et al. Evaluation of geographic atrophy from color photographs and fundus autofluorescence images: Age-related Eye Disease Study 2 Report Number 11[J]. Ophthalmology, 2016, 123(11): 2401-2407. DOI: 10.1016/j.ophtha.2016.06.025.
11. Lujan BJ, Rosenfeld PJ, Gregori G, et al. Spectral domain optical coherence tomographic imaging of geographic atrophy[J]. Ophthalmic Surg Lasers Imaging, 2009, 40(2): 96-101. DOI: 10.3928/15428877-20090301-16.
12. Schmitz-Valckenberg S, Fleckenstein M, Gobel AP, et al. Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 1-6. DOI: 10.1167/iovs.10-5619.