中华眼底病杂志

中华眼底病杂志

高度近视眼不同后巩膜形态的视网膜与脉络膜及巩膜厚度变化

查看全文

目的 观察高度近视眼不同后巩膜形态视网膜、脉络膜、巩膜厚度变化。 方法 临床检查确诊的高度近视患者60例96只眼纳入研究。其中,男性18例25只眼,女性42例71只眼;平均年龄(51.32±10.06)岁;平均等效球镜为(−14.38±6.31)DS;平均眼轴长度为(29.49±2.44)mm。患眼均采用日本Topcon公司深度光相干断层扫描(DRI-OCT)仪按照糖尿病早期治疗研究小组黄斑部格子分区方法,对该区域的视网膜、神经纤维层(RNFL)、脉络膜、巩膜厚度进行扫描,测量其厚度。以黄斑中心凹为中心1.0 mm直径的圆形区域为中央区域,围绕中央区域外围1.0 mm圆形为1环区域;1环外围1.5 mm圆形为2环区域。并均分为上方、下方、鼻侧、颞侧。应用设备三维模式将后巩膜形态分为Ⅰ、Ⅱ、Ⅲ、Ⅸ型,分别为27、46、11、12只眼,并据此分组。观察不同后巩膜形态组患眼视网膜、RNFL、脉络膜、巩膜厚度。 结果 Ⅰ、Ⅱ、Ⅲ、Ⅸ型组患眼之间中央、1、2环区域视网膜厚度比较,差异有统计学意义(F=4.48、5.03、4.98,P<0.01);RNFL厚度比较,差异无统计学意义(F=0.13,P=0.93)。中央区域脉络膜厚度比较,差异无统计学意义(F=0.31,P=0.81);1、2环区域脉络膜厚度比较,差异有统计学意义(F=2.86、2.96,P=0.04、0.04)。不同类型后巩膜组患眼中心凹下巩膜厚度比较,差异无统计学意义(F=0.80,P=0.49)。 结论 高度近视眼不同后巩膜形态后极部不同区域视网膜、脉络膜厚度出现改变,Ⅸ型改变明显;RNFL、巩膜厚度可能无影响。

Objective To observe the thickness of the retina, retinal nerve fiber layer (RNFL), choroid and sclera among the difference posterior sclera shape (PSS) in high myopia (HM). Methods Sixty HM patients (96 eyes) were enrolled in this study. There were 18 males (25 eyes) and 42 females (71 eyes). The mean age was (51.32±10.06) years. The mean spherical equivalent was (-14.38±6.31) DS. The mean axial length was (29.49±2.44) mm. The eyes were evaluated from deep range imaging optical coherent tomography (DRI-OCT) Atlantis 3D model, and divided as four groups include PSS-Ⅰ (27 eyes), PSS-Ⅱ (46 eyes), PSS-Ⅲ (11 eyes) and PSS-Ⅸ (12 eyes) according to the Curtin classification method. The thickness of the retina, RNFL, choroid and sclera were measured in the EDTRS Grid area. Results There were statistically significant differences in the thickness of retina of the central, first circle, second circle in the EDTRS Grid area among PSS-Ⅰ, PSS-Ⅱ, PSS-Ⅲ and PSS-Ⅸ groups (F=4.48, 5.03, 4.98; P<0.01). There was no statistically significant differences in the thickness of RNFL among four groups (F=0.13, P=0.93). There was no statistically significant differences in the central choroidal thickness (F=0.31, P=0.81). There were statistically significant differences in the first circle, second circle choroidal thickness among four groups (F=2.86, 2.96; P=0.04, 0.04). There was no statistically significant differences in the thickness of sclera under macular fovea among four groups (F=0.80, P=0.49). Conlusions There are changes of thickness of the retina, choroid present in the difference EDTRS Grid area among the difference PSS in HM, and changes in PSS-Ⅸ is most obvious.

关键词: 近视, 退行性/并发症; 巩膜疾病; 体层摄影术,光学相干; 视网膜厚度; 脉络膜厚度

Key words: Myopia, degenerative/complications; Scleral diseases; Tomography, optical coherence; Retinal thickness; Choroidal thickness

引用本文: 刘莉莉, 刘维锋. 高度近视眼不同后巩膜形态的视网膜与脉络膜及巩膜厚度变化. 中华眼底病杂志, 2017, 33(6): 597-600. doi: 10.3760/cma.j.issn.1005-1015.2017.06.010 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Curtin BJ. The posterior Staphyloma of pathologicalmyopia[J]. Trans Am Ophthalmol Soc, 1977, 75: 67-86.
2. Saw SM, Tong L, Chua WH, et al. Incidence and progression of myopia in Singaporean school children[J]. Invest Ophthalmol Vis Sci, 2005, 46(1): 51-57.DOI:10.1167/iovs.04-0565.
3. Yun SH, Bouma BE. Wavelength swept lasers[M]//Drexler W, Fujimoto JG. Optical coherence tomography: technology and applications. New York: Springer, 2008: 359-377.
4. Hirata M, Tsujikawa A, Matsumoto A, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 4971-4978.DOI: 10.1167/iovs.11-7729.
5. Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography [J]. Retina, 2012, 32(6): 1037-1044.DOI: 10.1097/IAE.0b013e318242b9c0.
6. Fledelius HC, Goldschmidt E. Eye shape and peripheral visual field recording in high myopia at approximately 54 years of age, as based on ultrasonography and Goldmann kinetic perimetry[J]. Acta Ophthalmol, 2010, 88(5): 521-526.DOI:10.1111/j.1755-3768.2009.01550.x.
7. Hsiang HW, Ohno-Matsui K, Shimada N, et al. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia[J]. Am J Ophthalmol, 2008, 146(1): 102-110. DOI: 10.1016/j.ajo.2008.03.010.
8. Leung CK, Mohamed S, Leung KS, et al. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study[J]. Invest Ophthalmol Vis Sci 2006, 47(12): 5171-5176. DOI:10.1167/iovs.06-0545.
9. Ohno-Matsui K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging[J]. Ophthalmology, 2014, 121(9): 1798-1809.DOI:10.1016/j.ophtha. 2014.03.035.
10. Miyake M, Yamashiro K, Akagi-Kurashige Y, et al. Analysis of fundus shape in highly myopic eyes by using curvature maps constructed from optical coherence tomography [J/OL]. PLoS One, 2014, 9(9): 107923[2014-09-26]. https://doi.org/10.1371/journal.pone.0107923. DOI:10.1371/journal.pone.0107923.
11. Chang L, Pan CW, Ohno-Matsui K, et al. Myopia-related fundus changes in Singapore adults with high myopia[J]. Am J Ophthalmol, 2013, 155(6): 991-999.DOI:10.1016/j.ajo.2013.01.016.
12. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population[J]. Ophthalmology, 2002, 109(4): 704-711.
13. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral- domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3876-3880. DOI:10.1167/iovs.08-3325.
14. Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography[J]. Am J Ophthalmol, 2010, 150(3): 325-329. DOI:10.1016/j.ajo.2010.04.018.
15. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[J]. Am J Ophthalmol, 2009, 147(5): 811-815. DOI: 10.1016/j.ajo.2008.12.008.
16. Takahashi A, Ito Y, Iguchi Y, et al. Axial length increases and related changesin highly myopic normal eyes with myopic complications in fellow eyes[J]. Retina, 2012, 32(1): 127-133. DOI: 10.1097/IAE.0b013e318214d094.
17. Wang NK, Lai CC, Chu HY, et al. Classification of early drytype myopic maculopathy with macular choroidal thickness[J]. Am J Ophthalmol, 2012, 153(4): 669-677. DOI:10.1016/j.ajo. 2011. 08.039.
18. Flores-Moreno I, Lugo F, Duker JS, et al. The relationship between axial length and choroidal thickness in eyes with high myopia[J]. Am J Ophthalmol, 2013, 155(2): 314-319. DOI:10.1016/j.ajo.2012.07.015.
19. Ohno-Matsui K, Akiba M, Modegi T, et al. Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2012, 53 (10): 6046-6061. DOI:10.1167/iovs.12-10161.
20. Hayashi M, Ito Y, Takahashi A, et al. Scleral thickness in highly myopic eyes measured byenhanced depth imaging optical coherence tomography[J]. Eye (Lond), 2013, 27(3): 410-417. DOI:10.1038/eye.2012.289.
21. Ohno-Matsui K, Akiba M, Moriyama M, et al. Imaging the retrobulbar subarachnoid space around the optic nerve by swept source optical coherence tomography in eyes with pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9644-9650. DOI:10.1167/iovs.11-8597.