中华眼底病杂志

中华眼底病杂志

不同程度晶状体混浊对视网膜血氧饱和度测量结果的影响

查看全文

目的 观察不同程度晶状体混浊对视网膜血氧饱和度测量结果的影响。 方法 横断面研究。不同程度晶状体混浊的44例患者44只眼纳入研究。其中,男性23例,女性21例。年龄48~84岁,平均年龄(71.8±10.3)岁。患眼平均最佳矫正视力0.65±0.22;平均眼压(14.2±4.3)mmHg(1 mmHg=0.133 kPa);平均等效球镜度数(−0.05±2.10)D。采用视觉质量分析系统测量患眼眼内客观散射指数(OSI),并根据OSI对晶状体混浊程度进行分级。OSI<1.0为1级,表示晶状体基本透明;1.0≤OSI<3.0为2级,表示早期白内障;3.0≤OSI<7.0为3级,表示进展期白内障;OSI>7.0为4级,表示成熟期白内障。采用视网膜血氧饱和度分析仪拍摄患眼不同波长光束下的眼底像,应用配套软件自动计算得出视网膜动脉、静脉血氧饱和度值。采用Pearson相关分析法对视网膜血氧饱和度与年龄、眼压、等效球镜度数、OSI之间的相关性进行分析。对比分析不同程度晶状体混浊患眼之间的视网膜血氧饱和度差异。 结果 患眼平均视网膜动脉、静脉血氧饱和度及动静脉血氧饱和度差值分别为(90.70±6.46)%、(47.34±13.51)%、(43.36±10.09)%。相关性分析结果显示,视网膜动脉、静脉血氧饱和度及动静脉血氧饱和度差值与年龄、眼压、等效球镜度数均无线性相关性(P>0.05)。视网膜动脉(r=−0.462,P=0.002)、静脉血氧饱和度(r=−0.500,P=0.001)与OSI呈负相关;动静脉血氧饱和度差值与OSI呈正相关(r=0.373,P=0.013)。44只眼中,晶状体混浊程度为1级11只眼,2级9只眼,3级14只眼,4级10只眼。晶状体混浊程度不同分级患眼视网膜动脉、静脉血氧饱和度比较,差异有统计学意义(F=5.340、4.710,P=0.003、0.007);动静脉血氧饱和度差值比较,差异无统计学意义(F=2.048,P=0.123)。4级晶状体混浊患眼的视网膜动脉、静脉血氧饱和度较1~3级晶状体混浊患眼明显降低,差异均有统计学意义(P<0.05);1、2、3级晶状体混浊患眼之间视网膜动脉、静脉血氧饱和度比较,差异均无统计学意义(P>0.05)。 结论 1~3级晶状体混浊对视网膜血氧饱和度测量结果无明显影响,4级晶状体混浊可致视网膜动脉、静脉血氧饱和度下降。

Objective To analysis the effect of lens opacity on the measurement of retinal vessel oxygen saturation. Methods This was a cross sectional study. Forty four eyes of 44 patients with different degrees of lens opacity were enrolled. There were 23 males and 21 females. The patients aged from 48 to 84 years, with the mean age of (71.8±10.3) years. The mean best corrected visual acuity was 0.65±0.22. The mean intraocular pressure was (14.2±4.3) mmHg (1 mmHg=0.133 kPa). The mean equivalent spherical degree was (−0.05±2.10) D. The opitical quality analysis system was applied to measure intraocular objective scattering index (OSI) caused by lens opacity. According to the OSI, the opacity of lens was divided into four groups. Patients with OSI value <1.0 was grouped to level 1, which indicated that the lens were basically transparent; patients with OSI value between 1.0 and 3.0 was grouped to level 2, which indicated early cataract; patients with OSI value between 3.0 and 7.0 was grouped to level 3, which indicated progressive cataract; patients with OSI value >7.0 was grouped to level 4, which indicated the mature stage of cataract. The retinal oximeter Oxymap T1 was used to capture the fundus images under different wavelengths. Pearson correlation analysis was used to analyze the correlation between retinal oxygen saturation and age, intraocular pressure, equivalent spherical degree and OSI. One way ANOVA was used to analyze the difference of retinal oxygen saturation among groups. Results The mean retinal arterial oxygen saturation, venous oxygen saturation and arteriovenous difference was (90.70±6.46)%, (47.34±13.51)%, (43.36±10.09)%, respectively. The correlations of retinal arterial oxygen saturation, venous oxygen saturation and arteriovenous difference with age, intraocular pressure, equivalent spherical degree was not statistically significant (all P>0.05). The retinal arterial oxygen saturation and venous oxygen saturation was negatively correlated with OSI (r=−0.462,−0.500; P=0.002, 0.001), the arteriovenous difference and OSI was positively correlated (r=0.373, P=0.013). According to lens opacity, there were 11 eyes in level 1, 9 eyes in level 2, 14 eyes in level 3, 10 eyes in level 4. There were significant differences of retinal artery and venous oxygen saturation among different lens opacity levels (F=5.340, 4.710; P=0.003, 0.007); meanwhile, the arteriovenous difference was not significantly different (F=2.048, P=0.123). The retinal arterial oxygen saturation and venous oxygen saturation was significantly lower in the level 4 lens opacity group than any other three groups (all P<0.05), but there was no statistically significant difference among level 1 to level 3 lens opacity group. Conclusion The effect of lens opacity of level 1 to level 3 is limited on the measurement of retinal oxygen saturation, but level 4 lens opacity will cause decrease of retinal artery and venous oxygen saturation.

关键词: 白内障; 血氧测定法; 散射测浊法和比浊法

Key words: Cataract; Oximetry; Nephelometry and turbidimetry

引用本文: 伍蒙爱, 毛剑波, 王君, 徐小琼, 沈丽君. 不同程度晶状体混浊对视网膜血氧饱和度测量结果的影响. 中华眼底病杂志, 2017, 33(6): 601-604. doi: 10.3760/cma.j.issn.1005-1015.2017.06.011 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Olafsdottir OB, Hardarson SH, Gottfredsdottir MS, et al. Retinal oximetry in primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6409-6413. DOI: 10.1167/iovs.10-6985.
2. Yip W, Siantar R, Perera SA, et al. Reliability and determinants of retinal vessel oximetry measurements in healthy eyes[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7104-7110. DOI: 10.1167/iovs.13-13854.
3. O'Connell RA, Anderson AJ, Hosking SL, et al. Test-retest reliability of retinal oxygen saturation measurement[J]. Optom Vis Sci, 2014, 91(6): 608-614. DOI: 10.1097/OPX.0000000000000257.
4. Goharian I, Iverson SM, Ruiz RC, et al. Reproducibility of retinal oxygen saturation in normal and treated glaucomatous eyes[J]. Br J Ophthalmol, 2015, 99(3): 318-322. DOI: 10.1136/bjophthalmol-2014-305718.
5. Türksever C, Orgül S, Todorova MG. Reproducibility of retinal oximetry measurements in healthy and diseased retinas[J]. Acta Ophthalmol, 2015, 93(6): 439-445. DOI: 10.1111/aos.12598.
6. Man RE, Sasongko MB, Xie J, et al. Associations of retinal oximetry in persons with diabetes[J]. Clin Experiment Ophthalmol, 2015, 43(2): 124-131. DOI: 10.1111/ceo.12387.
7. Hammer M, Heller T, Jentsch S, et al. Retinal vessel oxygen saturation under flicker light stimulation in patients with nonproliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 4063-4068. DOI: 10.1167/iovs.12-9659.
8. Eliasdottir TS, Bragason D, Hardarson SH, et al. Venous oxygen saturation is reduced and variable in central retinal vein occlusion[J/OL]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 253(8): 1409[2015-01-22]. https://dx.doi.org/10.1007/s00417-014-2919-5. DOI: 10.1007/s00417-014-2919-5.
9. Traustason S, la Cour M, Larsen M, et al. Retinal vascular oximetry during ranibizumab treatment of central retinal vein occlusion[J]. Br J Ophthalmol, 2014, 98(9): 1208-1211. DOI: 10.1136/bjophthalmol-2013-304580.
10. Van Keer K, Abegao PL, Willekens K, et al. Correlation between peripapillary choroidal thickness and retinal vessel oxygen saturation in young healthy individuals and glaucoma patients[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3758-3762. DOI: 10.1167/iovs.14-16225.
11. Mordant DJ, Al-Abboud I, Muyo G, et al. Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging[J]. Eye (Lond), 2014, 28(10): 1190-1200. DOI: 10.1038/eye.2014.169.
12. Patel SR, Hudson C, Flanagan JG, et al. The effect of simulated cataract light scatter on retinal vessel oximetry[J]. Exp Eye Res, 2013, 116: 185-189. DOI: 10.1016/j.exer.2013.09.004.
13. Heitmar R, Attardo A. The influence of simulated cataract on retinal vessel oximetry measurements[J]. Acta Ophthalmol, 2016, 94(1): 48-55. DOI: 10.1111/aos.12826.
14. Artal P, Benito A, Perez GM, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts[J/OL]. PLoS One, 2011, 6(2): 16823[2011-02-04]. http://dx.plos.org/10.1371/journal.pone.0016823. DOI: 10.1371/journal.pone.0016823.
15. 魏丽清, 聂莉, 钱振彬. 青光眼患眼与正常健康眼视网膜血氧饱和度对比观察[J]. 中华眼底病杂志, 2016, 32(4): 408-412. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.015.Wei LQ, Nie L, Qian ZB. Oxygen saturation in the retinal vessels of glaucoma and normal eyes[J]. Chin J Ocul Fundus Dis, 2016, 32(4): 408-412. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.015.
16. Hall NF, Lempert P, Shier RP, et al. Grading nuclear cataract: reproducibility and validity of a new method[J]. Br J Ophthalmol, 1999, 83(10): 1159-1163.
17. Davison JA, Chylack LT. Clinical application of the lens opacities classification system Ⅲ in the performance of phacoemulsification[J]. J Cataract Refract Surg, 2003, 29(1): 138-145.
18. Pan A, Wang Q, Huang F, et al. Correlation among lens opacities classification system Ⅲ grading, visual function index-14, pentacam nucleus staging, and objective scatter index for cataract assessment[J]. Am J Ophthalmol, 2015, 159(2): 241-247. DOI: 10.1016/j.ajo.2014.10.025.
19. Lim SA, Hwang J, Hwang K, et al. Objective assessment of nuclear cataract: comparison of double-pass and Scheimpflug systems[J]. J Cataract Refract Surg, 2014, 40(5): 716-721. DOI: 10.1016/j.jcrs.2013.10.032.
20. Cabot F, Saad A, McAlinden C, et al. Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system[J]. Am J Ophthalmol, 2013, 155(4): 629-635. DOI: 10.1016/j.ajo.2012.11.005.