中华眼底病杂志

中华眼底病杂志

视网膜色素上皮细胞移植支架技术研究进展

查看全文

视网膜色素上皮(RPE)细胞的功能障碍和丢失是老年性黄斑变性(AMD)等视网膜退行性病变最主要的病理特征。RPE细胞移植替代治疗是目前治疗AMD等退行性疾病最具潜能的治疗方式之一。细胞移植支架作为移植细胞的载体,既能帮助RPE细胞向视网膜下腔输送,又能促进移植细胞与宿主整合,提高RPE细胞的移植效率。细胞支架的材料来源广泛,主要有生物组织、天然聚合物、人工合成聚合物以及复合材料。应用化学改性法、等离子体表面处理法、生物分子修饰法等方式对支架进行表面修饰和改性,或调整支架的拓扑结构,能较大程度提高支架的细胞相容性,为未来细胞支架技术投入临床应用进一步奠定了基础。

Replacement of diseased retinal pigment epithelium (RPE) cells with healthy RPE cells by transplantation is one option to treat several retinal degenerative diseases including age-related macular degeneration, which are caused by RPE loss and dysfunction. A cellular scaffold as a carrier for transplanted cells, may hold immense promise for facilitating cell migration and promoting the integration of RPE cells into the host environment. Scaffolds can be prepared from a variety of natural and synthetic materials. Strategies, such as surface modification and structure adjustment, can improve the biomimetic properties of the scaffolds, optimize cell attachment and cellular function following transplantation and lay a foundation of clinical application in the future.

关键词: 组织支架; 视网膜色素上皮/移植; 黄斑变性/治疗; 综述

Key words: Tissue scaffolds; Retinal pigment epithelium/transplantation; Macular degeneration/therapy; Review

引用本文: 解心怡, 袁松涛, 刘庆淮. 视网膜色素上皮细胞移植支架技术研究进展. 中华眼底病杂志, 2017, 33(6): 655-658. doi: 10.3760/cma.j.issn.1005-1015.2017.06.030 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Menno VLC, Jennifer L, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. DOI: 10.1002/path.4266.
2. Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells[J]. Development, 2017, 144(8): 1368-1381.DOI: 10.1242/dev.133108.
3. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/S0140-6736(12)60028-2.
4. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
5. Treharne AJ, Grossel MC, Lotery AJ, et al. The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control[J]. Br J Ophthalmol, 2011, 95(6): 768-773. DOI: 10.1136/bjo.2010.184002.
6. Singhal S, Vemuganti GK. Primary adult human retinal pigment epithelial cell cultures on human amniotic membranes[J]. Indian J Ophthalmol, 2005, 53(2): 109-113. DOI: 10.4103/0301-4738.16174.
7. Kiilgaard JF, Wiencke AK, Scherfig E, et al. Transplantation of allogenic anterior lens capsule to the subretinal space in pigs[J]. Acta Ophthalmol Scand, 2002, 80(1): 76-81. DOI: 10.1034/j.1600-0420.2002.800115.x.
8. Beutel J, Greulich L, Lüke M, et al. Inner limiting membrane as membranous support in RPE sheet-transplantation[J]. Graefe's Arch Clin Exp Ophthalmol, 2007, 245(10): 1469-1473. DOI: 10.1007/s00417-007-0566-9.
9. Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy[J]. Br J Ophthalmol, 2011, 95(4): 441-442. DOI: 10.1136/bjo.2009.171926.
10. Lu JT, Lee CJ, Bent SF, et al. Thin collagen film scaffolds for retinal epithelial cell culture[J]. Biomaterials, 2007, 28(28): 1486-1494. DOI: 10.1016/j.biomat-erials.2006.11.023.
11. Thumann G, Viethen A, Gaebler A, et al. The in vitro and in vivo behaviour of retinal pigment epithelial cells cultured on ultrathin collagen membranes[J]. Biomaterials, 2009, 30(30): 287-294. DOI: 10.1016/j.biomaterials.2008.09.039.
12. Nita M, Strzałkamrozik B, Grzybowski A, et al. Age-related macular degeneration and changes in the extracellular matrix[J]. Med Sci Monit, 2014, 20(20): 1003-1016. DOI: 10.12659/MSM.889887.
13. Rose JB, Pacelli S, Aje H, et al. Gelatin-based materials in ocular tissue engineering[J]. Materials, 2014, 7(4): 3106. DOI: 10.3390/ma7043106.
14. Shadforth A, Suzuki S, Alzonne R, et al. Incorporation of human recombinant tropoelastin into silk fibroin membranes with the view to repairing bruch’s membrane[J]. J Funct Biomater, 2015, 6(3): 946-962. DOI: 10.3390/jfb6030946.
15. Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy[J]. Br J Ophthalmol, 2011, 95(4): 441-442. DOI: 10.1136/bjo.2009.171926.
16. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers (Basel), 2011, 3(3): 1377-1397. DOI: 10.3390/polym3031377.
17. Lu L, Nyalakonda K, Kam L, et al. Retinal pigment epithelial cell adhesion on novel micropatterned surfaces fabricated from synthetic biodegradable polymers[J]. Biomaterials, 2001, 22(3): 291-297. DOI: 10.1016/S0142-9612(00)00179-4.
18. Thomson H, Treharne AJ, Walker P, et al. Optimisation of polymer scaffolds for retinal pigment epithelium (RPE) cell transplantation[J]. Br J Ophthalmol, 2011, 95(4): 563-568. DOI: 10.1136/bjo.2009.166728.
19. Shahmoradi S, Yazdian F, Tabandeh F, et al.Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells[J].Mater Sci Eng C Mater Biol Appl, 2017, 73:300-309.DOI: 10.1016/j.msec.2016.11.076.
20. Hu Y, Liu L, Lu B, et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer[J]. Ophthalmic Res, 2012, 48(4): 186-191. DOI: 10.1159/000338749.
21. Peng CH, Chuang JH, Wang ML, et al. Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo[J]. Oncotarget, 2016, 7(40): 64631-64648. DOI: 10.18632/oncotarget.11502.
22. da Silva GR, Junior Ada S, Saliba JB, et al. Polyurethanes as supports for human retinal pigment epithelium cell growth[J]. Int J Artif Organs, 2011, 34(2): 198-209. DOI: 10.5301/IJAO.2011.6398.
23. Yunping LI, Tang L. Comparison of growth of human fetal RPE cells on electrospun nanofibers and etched pore polyester membranes[J]. J Cent South Univ Medical Sci, 2012, 37(5): 433-440. DOI: 10.3969/jssn.1672-7347.2012.05.001.
24. Warnke PH, Alamein M, Skabo S, et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers[J]. Acta Biomater, 2013, 9(12): 9414-9422. DOI: 10.1016/j.actbio.2013.07.029.
25. Xiang P, Wu KC, Zhu Y, et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells[J]. Biomaterials, 2014, 35(37): 9777-9788. DOI: 10.1016/j.biomaterials. 2014.08.040.
26. da Silva GR, da Silva-Cunha A Jr, Vieira LC, et al. Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth[J].J Mater Sci Mater Med, 2013, 24(5): 1309-1317. DOI: 10.1007/s10856-013-4885-6.
27. Timakova KA, Tarasov AV, Fedotov YA, et al. Modification of polymer films, coatings, and membranes[J]. Pet Chem, 2012, 52(7): 505-513. DOI: 10.1134/S096554411207016X.
28. Treharne AJ, Thomson HAJ, Grossel MC, et al. Developing methacrylate-based copolymers as an artificial Bruch’s membrane substitute[J]. J Biomed Mater Res A, 2012, 100(9): 2358-2364. DOI: 10.1002/jbm.a.34178.
29. Kearns V, Mistry A, Mason S, et al. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration[J]. J Mater Sci Mater Med, 2013, 28(8): 2013-2021. DOI: 10.1007/s10856-012-4675-6.
30. Kundu J, Michaelson A, Baranov P, et al. Approaches to cell delivery: substrates and scaffolds for cell therapy[J]. Dev Ophthalmol, 2014, 53:143-154. DOI: 10.1159/000357369.
31. Sistiabudi R, Paderi J, Panitch A, et al. Modification of native collagen with cell-adhensive peptide to promote RPE cell attachment on bruch’s membrane[J]. Biotechnol Bioeng, 2009, 102(6): 1723-1729. DOI: 10.1002/bit.22215.
32. Calejo MT, Ilmarinen T, Jongprasitkul H, et al. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium[J]. J Biomed Mater Res A, 2016, 104(7): 1646-1656. DOI: 10.1002/jbm.a.35690.
33. Liu Z, Yu N, Holz FG, et al. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography[J]. Biomaterials, 2014, 35(9): 2837-2850. DOI: 10.1016/j.biomaterials.2013.12.069.
34. Lu B, Zhu D, Hinton D, et al. Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells[J]. Biomed Microdevices, 2012, 14(4): 659-667. DOI: 10.1007/s10544-012-9645-8.
35. Stanzel BV, Liu Z, Brinken R, et al. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation[J]. Investig Ophthalmol Vis Sci, 2012, 53(1): 490-500. DOI: 10.1167/iovs.11-8260.