中华眼底病杂志

中华眼底病杂志

特发性黄斑前膜患眼黄斑中心凹无血管区面积与视力及视物变形的相关性研究

查看全文

目的 观察特发性黄斑前膜(IMEM)患眼黄斑中心凹无血管区(FAZ)面积与视力及视物变形的相关性。 方法 横断面临床病例对照研究。临床检查确诊的IMEM患者43例43只眼(IEM组)及正常者35名35只眼(对照组)纳入研究。所有受检者均行最佳矫正视力(BCVA)、裂隙灯显微镜、间接检眼镜、视物变形评分表(M-chart表)、彩色眼底照相、频域光相干断层扫描(OCT)及OCT血管成像(OCTA)检查。BCVA统计时转换为最小分辨角对数(logMAR)视力。IEM组、对照组受检眼平均logMAR BCVA、黄斑中心视网膜厚度(CMT)比较,差异均有统计学意义(Z=−7.379、−7.560,P<0.001)。对比观察IEM组、对照组受检眼FAZ面积;同时分析IEM组患眼FAZ面积与BCVA、视物变形度之间的相关性。 结果 与对照组受检眼比较,IEM组患眼视网膜浅层、深层FAZ面积均较小,差异有统计学意义(t=−30.316、−27.606,P<0.001)。IEM组患眼平均视物变形度为0.41±0.32,其中平均水平变形(MH)、垂直变形(MV)分别为0.49±0.40、0.32±0.29。与MV比较,MH明显较重,差异有统计学意义(Z=−2.000,P=0.046)。相关性分析结果显示,IEM组患眼视网膜浅层FAZ面积与视物变形度呈负相关(r=−0.709,P<0.001);视网膜深层FAZ面积与视物变形度、BCVA呈负相关(r=−0.533、−0.838,P<0.001)。 结论 IMEM患眼FAZ面积较正常眼明显减少。视网膜浅层FAZ面积与视物变形度明显相关;视网膜深层FAZ面积与视物变形度及BCVA明显相关。

Objective To analyze the correlation of foveal avascular zone (FAZ) size with visual acuity and metamorphopsia in idiopathic macular epiretinal membrane (IMEM) eyes. Methods This is a cross-sectional study, including 43 patients (43 eyes) with IMEM (IMEM group) and 35 health subjects (35 eyes) as control group. The best corrected visual acuity (BCVA) was measured using the international standard visual acuity chart, and the results were converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. The severity of metamorphopsia was measured using M-charts. The FAZ areas were estimated with optical coherence tomography angiography (OCTA) in both the superficial and deep capillary plexus layers. The central macular thickness (CMT) was assessed with spectral-domain optical coherence tomography. There was no difference of logMAR BCVA and CMT between two groups (Z=−7.379, −7.560; P<0.001). The differences of FAZ areas between the two groups were analyzed. The correlative analysis was performed to investigate the relationship between FAZ areas and visual acuity as well as metamorphopsia. Results The FAZ area in superficial and deep capillary plexus in IMEM group were smaller than those in control group (t=−30.316, −27.606; P<0.001). In IMEM group, the mean M-score was 0.41±0.32; the horizontal and vertical M-score were 0.49±0.40 and 0.32±0.29, respectively. The horizontal M-score was higher than vertical M-score with the significant difference (Z=−2.000, P=0.046). In IMEM group, the FAZ area in superficial capillary plexus correlated inversely with metamorphopsia (r=−0.709, P<0.001); the FAZ area in deep capillary plexus correlated inversely with metamorphopsia and BCVA (r=−0.533, −0.838; P<0.001). Conclusions The FAZ areas are significantly decreased in IMEM eyes compared with normal eyes. Both superficial and deep FAZ areas are correlated with metamorphopsia, and deep FAZ area is also correlated with BCVA.

关键词: 黄斑; ; 视觉差异; 体层摄影术,光学相干; 中心凹无血管区

Key words: Macula lutea; Membranes; Vision disparity; Tomography, optical coherence; Foveal avascular zone

引用本文: 曾苗, 陈晓, 洪玲, 蔡春艳, 晏颖, 黄志坚. 特发性黄斑前膜患眼黄斑中心凹无血管区面积与视力及视物变形的相关性研究. 中华眼底病杂志, 2018, 34(1): 8-12. doi: 10.3760/cma.j.issn.1005-1015.2018.01.003 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Seung ML, Kang YP, Han JK, et al. Association between tangential contraction and early vision loss in idiopathic epiretinal membrane[J]. Retina, 2017, 37(1): 1-9. DOI: org/10.1097/iae.0000000000001559.
2. Nelis P, Alten F, Clemens CR, et al. Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(7): 1319-1324. DOI: org/10.1007/s00417-017-3640-y.
3. Yu DY, Cringle SJ, Su EN. Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4728-4733. DOI: org/10.1167/iovs.05-0694.
4. Pournaras CJ, Donati G, Brazilikos PD, et al. Macular epiretinal membranes[J]. Semin Ophthalmol, 2000, 15(2): 100-107. DOI: 10.1053/soph.2000.7207.
5. Matsumoto C, Arimura E, Okuyama S, et al. Quantification of metamorphopsia in patients with epiretinal membranes[J]. Invest Ophthalmol Vis Sci, 2003, 44(9): 4012-4016. DOI: org/10.1167/iovs.03-0117.
6. McLeod D, Hiscott PS, Grierson I. Age-related cellular proliferation at the vitreoretinal juncture[J]. Eye (Lond), 1987, 1(Pt 2)(2): 263-281. DOI: org/10.1038/eye.1987.46.
7. Smiddy WE, Maguire AM, Green WR, et al. Idiopathic epiretinal membranes. Ultrastructural characteristics and clinicopathologic correlation[J]. Ophthalmology, 1989, 96(6): 811-821. DOI: org/10.1016/S0161-6420(89)32811-9.
8. Folk JC, Adelman RA, Flaxel CJ, et al. Idiopathic epiretinal membrane and vitreomacular traction preferred practice pattern guidelines[J]. Ophthalmology, 2016, 123(1): 152-181. DOI: org/10.1016/j.ophtha.2015.10.048.
9. Yagi T, Sakata K, Funatsu H, et al. Evaluation of perifoveal capillary blood flow velocity before and after vitreous surgery for epiretinalmembrane[J]. Graefe's Arch Clin Exp Ophthalmol, 2011, 250(3): 459-460. DOI: org/10.1007/s00417-011-1618-8.
10. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: org/10.1364/oe.20.004710.
11. Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography[J]. Ophthalmology, 2014, 121(1): 180-187. DOI: org/10.1016/j.ophtha.2013.09.002.
12. Samara WA, Say EA, Khoo CT, et al Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2188-2195. DOI: org/10.1097/iae.0000000000000847.
13. La Spina C, Carnevali A, Marchese A, et al. Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings[J]. Retina, 2017, 37(9): 1636-1641. DOI: 10.1097/IAE.0000000000001426.
14. Casselholmde Salles M, Kvanta A, Amrén U, et al. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 242-246. DOI: org/10.1167/iovs.15-18819.
15. Hussain N, Hussain A. Diametric measurement of foveal avascular zone in healthy young adults using optical coherence tomography angiography[J]. Int J Retina Vitreous, 2016, 2(12): 27-32. DOI: org/10.1186/s40942-016-0053-8.
16. Hashimoto Y, Saito W, Saito M, et al. Retinal outer layer thickness increases after vitrectomy for epiretinal membrane, and visual improvement positively correlates with photoreceptor outer segment length[J]. Graefe's Arch Clin Exp Ophthalmol, 2013, 252(2): 219-226. DOI: org/10.1007/s00417-013-2432-2.
17. Nishi Y, Shinoda H, Uchida A, et al. Detection of early visual impairment in patients with epiretinal membrane[J]. Acta Ophthalmol, 2013, 91(5): 353-357. DOI: org/10.1111/aos.12060.
18. Okamoto F, Sugiura Y, Okamoto Y, et al. Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery[J]. Retina, 2015, 35(10): 2107-2114. DOI: 10.1097/IAE.0000000000000602.
19. Arimura E, Matsumoto C, Okuyama S, et al. Retinal contraction and metamorphopsia scores in eyes with idiopathic epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2005, 46(8): 2961-2966. DOI: org/10.1167/iovs.04-1104.
20. Yoshimi S, Fumiki O, Yoshifumi O, et al. Relationship between metamorphopsia and intraretinal cysts within the fluid cuff after surgery for idiopathic macular hole[J]. Retina, 2017, 37(1): 70-75. DOI: org/10.1097/iae.0000000000001136.