中华眼底病杂志

中华眼底病杂志

视网膜分支静脉阻塞患眼浅层与深层毛细血管层黄斑区微血管形态改变的差异

查看全文

目的 对比观察视网膜分支静脉阻塞(BRVO)患眼浅层与深层毛细血管层黄斑区微血管形态改变的差异。 方法 临床确诊为BRVO的63例患者63只眼纳入研究。其中,男性28例,女性35例;年龄39~74岁,平均年龄(59.76±8.48)岁。均为单眼。所有患眼均行光相干断层扫描血管成像(OCTA)检查,扫描范围为黄斑区3 mm×3 mm。选择浅层及深层毛细血管层进行分析,观察患眼是否存在黄斑中心凹无血管区(FAZ)扩大、毛细血管无灌注区(CNP)、微血管异常(MA)及血管瘀滞扩张征(VC)等黄斑区微血管形态变化。采用系统内置测量软件测量FAZ面积。对比观察浅层、深层毛细血管层黄斑区微血管形态改变的差异。采用McNemar检验分析浅层、深层毛细血管层对FAZ扩大、CNP、MA及VC判读的差异。 结果 OCTA检查发现,浅层、深层毛细血管层各可见FAZ扩大43、50只眼,分别占68.25%、79.40%;CNP 51、50只眼,分别占81.00%、79.40%;MA 62、62只眼,分别占98.40%、98.40%;VC 23、52只眼,分别占36.50%、82.50%。患眼FAZ面积为(0.55±0.37)mm2。McNemar检验结果显示,CNP(P=1.000)、MA(P=1.000)在浅层和深层毛细血管层之间差异无统计学意义,FAZ扩大(P=0.039)、VC(P<0.001)在浅层和深层毛细血管层之间差异有统计学意义。 结论 BRVO患眼深层毛细血管层较浅层毛细血管层可发现更多的FAZ扩大和VC。

Objective To observe the difference of macular microvascular features in superficial and deep vascular plexi in patients with branch retinal vein occlusion (BRVO). Methods A total of 63 BRVO patients (63 eyes) were enrolled in this study. There were 28 males (28 eyes) and 35 females (35 eyes). The patients aged from 39 to 74 years, with the mean age of (59.76±8.48) years. All eyes were evaluated by optical coherence tomography angiography (OCTA). The macular angiography scan protocol covered a 3 mm×3 mm area. The focus of angiography analysis included superficial vascular plexus and deep vascular plexus. The following vascular morphological parameters were assessed in these two plexi: foveal avascular zone (FAZ) enlargement, capillary non-perfusion (CNP) occurrence, microvascular abnormalities (MA) appearance, and vascular congestion (VC) signs. The FAZ area was measured by the built-in software. The macular microvascular morphology changes in superficial and deep vascular plexi were compared through McNemar test. Results The superficial and deep plexi showed FAZ enlargement in 43 eyes (68.3%) and 50 eyes (79.4%), CNP in 51 eyes (81%) and 50 eyes (79.4%), MA in 62 eyes (98.4%) and 62 eyes (98.4%), VC in 23 eyes (36.5%) and 52 eyes (82.5%), respectively. FAZ area was (0.55±0.37) mm2. There was no difference in CNP (P=1.000) and MA (P=1.000) between superficial and deep plexi. But, there was difference in FAZ enlargement (P=0.039) and VC signs (P<0.001) between superficial and deep plexi. Conclusion Deep vascular plexus showed more FAZ enlargement and VC sign than superficial plexus in BRVO patients.

关键词: 视网膜静脉闭塞/诊断; 体层摄影术,光学相干

Key words: Retinal vein occlusion/diagnosis; Tomography, optical coherence

引用本文: 王林妮, 于荣国, 杨锦, 胡立影, 宫雪, 陈璐, 李志清, 李筱荣. 视网膜分支静脉阻塞患眼浅层与深层毛细血管层黄斑区微血管形态改变的差异. 中华眼底病杂志, 2018, 34(1): 13-16. doi: 10.3760/cma.j.issn.1005-1015.2018.01.004 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. DOI: 10.1001/jamaophthalmol.2014.3616.
2. Adhi M, Filho MA, Louzada RN, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 486-494. DOI: 10.1167/iovs.15-18907.
3. Shahlaee A, Hong BK, Ho AC. Optical coherence tomography angiography features of branch retinal vein occlusion[J]. Retin Cases Brief Rep, 2017, 11(1): 90-93. DOI: 10.1097/ICB.0000000000000297.
4. Novais EA, Waheed NK. Optical coherence tomography angiography of retinal vein occlusion[J]. Dev Ophthalmol, 2016, 56: 132-138. DOI: 10.1159/000442805.
5. Rispoli M, Savastano MC, Lumbroso B. Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2332-2338. DOI: 10.1097/IAE.0000000000000845.
6. 卢宁, 张承芬. 视网膜静脉阻塞[M]//张承芬. 眼底病学. 2版.北京: 人民卫生出版社, 2010: 237-239.Lu N, Zhang CF. Retinal vein occlusion[M]//Zhang CF. Diseases of ocular fundus. 2nd ed. Beijing:People's Medical Publishing House, 2010: 237-239.
7. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
8. Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44. DOI: 10.1016/j.ajo.2015.04.021.
9. Kuehlewein L, An L, Durbin MK, et al. Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(2): 249-252. DOI: 10.3928/23258160-20150213-19.
10. Tokayer J, Jia Y, Dhalla AH, et al. Blood flow velocity quantification using split spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 1909-1924. DOI: 10.1364/BOE.4.001909.
11. Gorrand JM. Diffusion of the human retina and quality of the optics of the eye on the fovea and the peripheral retina [J]. Vision Res, 1979, 19(8): 907-912.
12. Samara WA, Say EA, Khoo CT, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2188-2195. DOI: 10.1097/IAE.0000000000000847.