中华眼底病杂志

中华眼底病杂志

视网膜分支静脉阻塞患眼黄斑区血流密度及黄斑中心凹无血管区面积测量结果观察

查看全文

目的 观察视网膜分支静脉阻塞(BRVO)患眼黄斑区血流密度和黄斑中心凹无血管区(FAZ)面积的变化。 方法 回顾性病例对照研究。临床确诊为单眼颞侧BRVO伴黄斑水肿的45例患者纳入研究。其中,男性22例,女性23例。年龄37~77岁,平均年龄(53.16±9.68)岁。病程3~90 d,平均病程(15.24±15.18)d。所有患者双眼行光相干断层扫描血管成像(OCTA)检查,均以黄斑中心凹为中心对其3 mm×3 mm的范围进行扫描。设备自带软件自动识别以黄斑中心凹为中心的直径3 mm区域并测量其血流密度,以此为浅层视网膜黄斑区血流密度;深层视网膜黄斑区血流密度采用手动测量。软件自动识别浅层及深层视网膜FAZ,并测量其面积。将BRVO患眼静脉阻塞侧定义为受累侧,非静脉阻塞侧定义为非受累侧。对比分析BRVO患眼及其对侧健康眼的浅层、深层视网膜黄斑区血流密度、FAZ面积以及受累侧、非受累侧血流密度。 结果 与对侧健康眼比较,BRVO患眼浅层、深层视网膜黄斑区血流密度及受累侧、非受累侧血流密度均降低,差异有统计学意义(t=14.186、9.468、15.386、9.435,P<0.05)。深层视网膜黄斑区血流密度的降低幅度较浅层更大,分别为7.65%、7.27%。与对侧健康眼比较,BRVO患眼浅层、深层视网膜FAZ面积均扩大,差异有统计学意义(t=3.216、5.119,P<0.05)。深层视网膜FAZ面积扩大幅度较浅层更大,分别为0.19、0.11 mm2 结论 BRVO患眼黄斑区血流密度降低,FAZ面积扩大。与浅层视网膜比较,深层视网膜黄斑区血流密度降低幅度及FAZ面积扩大幅度更大。

Objective To observe the alterations of macular vascular density and the area of foveal avascular zone (FAZ) in branch retinal vein occlusion (BRVO) eyes. Methods A retrospective case-control study. Forty-five patients with unilateral BRVO and macular edema were enrolled in this study. Optical coherence tomography angiography (OCTA) was performed on the BRVO and fellow eyes. The scanning region in the macular area was 3 mm×3 mm. Macular vascular density and FAZ area in the superficial and deep retinal capillary plexi were measured in all eyes. The values of macular vascular density and FAZ area between BRVO eyes and fellow eyes, affected sector and unaffected sector were compared. Results The mean overall vascular density measured in the entire scan was lower in BRVO eyes compared with fellow eyes in both the superficial and deep capillary plexus (t=14.186, 9.468; P<0.05). The reduce degree of vascular density in the deep capillary plexus (7.65%) was higher than that in the superficial plexus (7.27%). In the superficial plexus, the vascular density was lower in the affected sector and the unaffected sector of the BRVO eyes compared with the corresponding sector in the fellow eyes (t=15.386, 9.435; P<0.05). The FAZ area enlarged in the BRVO eyes compared with the fellow eyes in the superficial capillary plexus and in the deep capillary plexus (t=3.216, 5.119; P<0.05). The degree of enlargement of FAZ area in the deep capillary plexus (0.19 mm2) was higher than that in the superficial plexus (0.11 mm2). Conclusions In eyes with BRVO, quantitative OCTA measurements confirm that vascular density decreased and FAZ area enlarged in the superficial and deep capillary plexi. The reduce degree of vascular density and enlargement degree of FAZ area in the deep capillary plexus are higher than those in the superficial plexus.

关键词: 视网膜静脉闭塞/诊断; 局部血流; 体层摄影术,光学相干

Key words: Retinal vein occlusion/diagnosis; Regional blood flow; Tomography, optical coherence

引用本文: 李可嘉, 喻晓兵, 陈沁. 视网膜分支静脉阻塞患眼黄斑区血流密度及黄斑中心凹无血管区面积测量结果观察. 中华眼底病杂志, 2018, 34(1): 17-20. doi: 10.3760/cma.j.issn.1005-1015.2018.01.005 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Kwiterovich KA, Maguire MG, Murphy RP, et al. Frequency of adverse systemic reactions after fluorescein angiography: results of a prospective study[J]. Ophthalmology, 1991, 98(7): 1139-1142.
2. Huang D, Jia Y, Gao SS, et al. Optical coherence tomography angiography using the optovue device[J]. Dev Ophthalmol, 2016, 56: 6-12. DOI: 10.1159/000442770.
3. Lupidi M, Coscas F, Cagini C, et al. Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 169: 9-23. DOI: 10.1016/j.ajo.2016.06.008.
4. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
5. Carpineto P, Mastropasqua R, Marchini G, et al. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography[J]. Br J Ophthalmol, 2016, 100(5): 671-676. DOI: 10.1136/bjophthalmol-2015-307330.
6. Chalam KV, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. J Ophthalmic Vis Res, 2016, 11(1): 84-92. DOI: 10.4103/2008-322X.180709.
7. 卢宁, 张承芬. 视网膜分支静脉阻塞[M]//张承芬. 眼底病学. 2版. 北京: 人民卫生出版社, 2010: 237-243.Lu N, Zhang CF. Branch retinal vein occlusion[M]//Zhang CF. Diseases of ocular fundus. 2nd ed. Beijing: People’s Medical Publishing House, 2010: 237-243.
8. Campochiaro PA, Bhisitkul RB, Shapiro H, et al. Vascular endothelial growth factor promotes progressive retinal nonperfusion in patients with retinal vein occlusion[J]. Ophthalmology, 2013, 120(4): 795-802. DOI: 10.1016/j.ophtha.2012.09.032.
9. Hockley DJ, Tripathi RC, Ashton N. Experimental retinal branch vein occlusion in rhesus monkeysⅢ: histopathological and electron microscopical studies[J]. Br J Ophthalmol, 1979, 63(6): 393-411.
10. Paques M, Tadayoni R, Sercombe R, et al. Structural and hemodynamic analysis of the mouse retinal microcirculation[J]. Invest Ophthalmol Vis Sci, 2003, 44(11): 4960-4967.
11. Coscas F, Glacet-Bernard A, Miere A, et al. Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa[J]. Am J Ophthalmol, 2016, 161(1): 160-171. DOI: 10.1016/j.ajo.2015.10.008.
12. Rahimy E, Sarraf D. Paraeentral acute middle maculopathy spectral--domain optical coherence tomography feature of deep capillary ischemia[J]. Curr Opin Ophthalmol, 2014, 25(3): 207-212. DOI: 10.1097/ICU.0000000000000045.
13. Parodi MB, Visintin F, Della Rupe P, et al. Foveal avascular zone in macular branch retinal vein occlusion[J]. Int Ophthalmol, 1995, 19(1): 25-28.
14. Bandello F, Corbelli E, Carnevali A, et al. Optical coherence tomography angiography of diabetic retinopathy[J]. Dev Ophthalmol, 2016, 56: 107-112. DOI: 10.1159/000442801.
15. Arend O, Wolf S, Harris A, et al. The relationship of macular microcirculation to visual acuity in diabetic patients[J]. Arch Ophthalmol, 1995, 113(5): 610-614.
16. Sim DA, Keane PA, Zarranz-Ventura J, et al. Predictive factors for the progression of diabetic macular ischemia[J]. Am J Ophthalmol, 2013, 156(4): 684-692. DOI: 10.1016/j.ajo.2013.05.033.