中华眼底病杂志

中华眼底病杂志

多灶性脉络膜炎不同性质病灶的多种影像检查特征观察

查看全文

目的 观察多灶性脉络膜炎(MFC)不同性质病灶的多种影像检查特征。 方法 临床确诊为MFC的28例患者51只眼纳入研究。其中,男性10例,女性18例;年龄31~49岁,平均年龄(41.5±0.8)岁。双眼发病23例,单眼发病5例。所有患眼均行最佳矫正视力(BCVA)、裂隙灯显微镜、散瞳后间接检眼镜、眼底彩色照相、红外眼底照相、眼底自身荧光(FAF)、荧光素眼底血管造影(FFA)及光相干断层扫描(OCT)检查。参照文献并综合多种眼底影像检查结果将MFC病灶分为活动性炎症病灶、非活动性炎症病灶以及炎症病灶继发活动性CNV、炎症病灶继发非活动性CNV。总结分析各类病灶的多种影像检查特征。 结果 眼底彩色照相检查发现,活动性炎症病灶边界模糊;非活动性炎症病灶边界较为清晰。继发活动性CNV者可见病灶轻度隆起,病灶周围视网膜水肿;继发非活动性CNV者病灶瘢痕纤维化,色素沉着。红外眼底照相检查发现,活动性与非活动性炎症病灶均表现为均匀的点状或片状强荧光。继发CNV者病灶处荧光不均匀,在强荧光周围合并一更为明亮的强荧光环。FAF检查发现,活动性炎症病灶内部呈弱自身荧光(AF),周围合并有强AF环;非活动性炎症病灶表现为AF缺失。继发活动性CNV者病灶表现为强AF,其边缘有一圈更强的AF环,合并出血水肿处表现为遮蔽荧光;继发非活动性CNV者病灶本身呈强AF,周围环绕一弱AF环。FFA检查发现,活动性炎症病灶早期呈弱荧光,后期荧光逐渐增强,轻度渗漏;非活动性炎症病灶呈典型的透见荧光。继发活动性CNV者荧光素渗漏明显;继发非活动性CNV者病灶表现为瘢痕染色。OCT检查发现,活动性炎症病灶表现为视网膜色素上皮(RPE)下突起病灶呈中弱反射信号;非活动性炎症病灶既可以表现为穿凿样RPE缺损及脉络膜层次瘢痕,也可以表现为清晰的RPE隆起病灶呈强反射信号。继发活动性CNV者表现为视网膜下积液存留;继发非活动性CNV者可见RPE缺损及脉络膜瘢痕形成。 结论 MFC活动性炎症病灶边界清晰、多合并视网膜水肿,FFA可见荧光素渗漏;非活动性炎症病灶边界较为模糊、不合并视网膜水肿,FFA可见典型透见荧光。继发活动性CNV者OCT可见视网膜下积液;继发非活动性CNV者可见RPE缺损及脉络膜瘢痕形成。

Objective To observe multimodality imaging features of different properties in multifocal choroiditis (MFC). Methods Twenty-eight patients (51 eyes) with MFC were enrolled in this study. There were 10 males and 18 females. The patients aged from 31 to 49 years, with the mean age of (41.5±0.8) years. There were 23 bilateral patients and 5 unilateral patients. All patients underwent best corrected visual acuity (BCVA), slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus colorized photography, infrared fundus photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) and optical coherence tomography (OCT) examinations. The lesions were classified as active inflammatory lesion, inactive inflammatory lesion, active choroidal neovascularization (CNV) and inactive CNV. The multimodality imaging features of different properties in MFC was observed. Results In fundus colour photography, the boundaries of active inflammatory lesions were blurry, while inactive inflammatory lesions had relatively clear boundaries. Secondary active CNV showed mild uplift and surrounding retinal edema; Secondary active CNV lesions showed mild uplift, retinal edema around the lesion; Secondary non-active CNV had no retinal exudate edema lesions, but had lesions fibrosis and varying degrees of pigmentation. Infrared fundus examination revealed that both active and inactive inflammatory lesions showed a uniform punctate or sheet-like fluorescence. The fluorescence of CNV lesions was not uniform; there was a bright ring around the strong fluorescence. FAF found that active inflammatory lesions showed weak autofluorescence (AF), surrounded by a strong fluorescence ring; inactive inflammatory lesions showed AF loss. Secondary active CNV lesions showed strong AF with a bright ring along the edge, and obscured fluorescence for co-occurred hemorrhagic edema; secondary non-active CNV lesions were strong AF, surrounded by a weak AF ring. FFA revealed that active inflammatory lesions showed weak fluorescence in the early stage, and fluorescence gradually increased in the late stage with slight leakage. Inactive inflammatory lesions showed typical transmitted fluorescence. Fluorescein leakage secondary to active CNV was significant; lesions secondary to inactive CNV showed scar staining. In OCT, the active inflammatory lesions showed moderately weak reflex signals in the protruding lesions under the retinal pigment epithelium (RPE). The inactive inflammatory lesions showed penetrable RPE defects or choroidal scar, it also showed clear RPE uplift lesions with a strong reflection signal. Secondary active CNV showed subretinal fluid retention; secondary non-active CNV showed RPE defects and choroidal scarring. Conclusions Active inflammatory lesions in MFC have blurred boundary, retinal edema and fluorescein leakage in FFA; inactive inflammatory lesions have clear boundary and typical transmitted fluorescence in FFA, and no retinal edema. Secondary active CNV showed subretinal fluid in OCT; and secondary non-active CNV showed RPE defects and choroidal scarring.

关键词: 脉络膜炎/诊断; 荧光素血管造影; 体层摄影术,光学相干

Key words: Choroiditis/diagnosis; Fluorescein angiography; Tomography, optical coherence

引用本文: 李娟娟, 黎铧. 多灶性脉络膜炎不同性质病灶的多种影像检查特征观察. 中华眼底病杂志, 2018, 34(1): 38-42. doi: 10.3760/cma.j.issn.1005-1015.2018.01.010 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Jung JJ, Khan S, Mrejen S, et al. Idiopathic multifocal choroiditis with outer retinal or chorioretinal atrophy[J]. Retina, 2014, 34(7): 1439-1450. DOI: 10.1097/IAE.0000000000000079.
2. Astroz P, Miere A, Mrejen S, et al. Optical coherence tomography angiography to distinguish choroidal neovascularization from macular inflammatory lesions in multifocal choroiditis[J/OL]. Retina, 2017, 2017: E1[2017-03-30]. http://insights.ovid.com/pubmed?pmid=28368976. DOI: 10.1097/IAE.0000000000001617. [published online ahead of print].
3. Fung AT, Pal S, Yannuzzi NA, et al. Multifocal choroiditis without panuveitis: clinical characteristics and progression[J]. Retina, 2014, 34(1): 98-107. DOI: 10.1097/IAE.0b013e31829234cb.
4. Munk MR, Jung JJ, Biggee K, et al. Idiopathic multifocal choroiditis/punctate inner choroidopathy with acute photoreceptor loss or dysfunction out of proportion to clinically visible lesions[J]. Retina, 2015, 35(2): 334-343. DOI: 10.1097/IAE.0000000000000370.
5. Mantovani A, Giani A, Herbort CP Jr, et al. Interpretation of fundus autofluorescence changes in choriocapillaritis: a multi-modality imaging study[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(8): 1473-1479. DOI: 10.1007/s00417-015-3205-x.
6. Jung JJ, Mrejen S, Freund KB, et al. Idiopathic multifocal choroiditis with peripapillary zonal inflammation: a multimodal imaging analysis[J]. Retin Cases Brief Rep, 2014, 8(2): 141-144. DOI: 10.1097/ICB.0000000000000026.
7. Brydak-Godowska J, Gołębiewska J, Turczyńska M, et al. Observation and clinical pattern in patients with white dot syndromes: the role of color photography in monitoring ocular changes in long-term observation [J]. Med Sci Monit, 2017, 23: 1106-1115.
8. Kramer M, Priel E. Fundus autofluorescence imaging in multifocal choroiditis: beyond the spots[J]. Ocul Immunol Inflamm, 2014, 22(5): 349-355. DOI: 10.3109/09273948.2013.855797.
9. Pang CE, Freund KB. Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology[J]. Am J Ophthalmol, 2014, 158(1): 171-178. DOI: 10.1016/j.ajo.2014.03.003.
10. Dolz-Marco R, Fine HF, Freund KB. How to differentiate myopic choroidal neovascularization, idiopathic multifocal choroiditis, and punctate inner choroidopathy using clinical and multimodal imaging findings [J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(3): 196-201. DOI: 10.3928/23258160-20170301-01.
11. Raven ML, Ringeisen AL, Yonekawa Y, et al. Multi-modal imaging and anatomic classification of the white dot syndromes [J/OL]. Int J Retina Vitreous, 2017, 3: 12[2017-03-20]. https://journalretinavitreous.biomedcentral.com/articles/10.1186/s40942-017-0069-8. DOI: 10.1186/s40942-017-0069-8.
12. Cheng L, Chen X, Weng S, et al. Spectral-domain optical coherence tomography angiography findings in multifocal choroiditis with active lesions [J]. Am J Ophthalmol, 2016, 169: 145-161. DOI: 10.1016/j.ajo.2016.06.029.