中华眼底病杂志

中华眼底病杂志

光相干断层扫描血管成像在近视中的应用研究进展

查看全文

光相干断层扫描血管成像(OCTA)可提供高分辨率视网膜和脉络膜血管结构图像并量化血流密度,具有无创、快速和可重复特点。近视根据病因不同分为单纯性近视和病理性近视(PM);发病机制尚不完全明确,血流密度的改变与其密切相关。单纯性近视中,OCTA可分层分区量化视网膜脉络膜血流密度和中心凹无血管区面积,监测病程进展,并通过分析其相关性增加对病变机制的认识;PM中,OCTA在观察脉络膜新生血管、脉络膜萎缩和Zinn-Haller动脉环等眼底改变具有一定优势,可早期诊断、治疗和随访评估预后。但OCTA在图像的获取、分层、质量和动态观察方面仍存在一定局限性,有待进一步完善。

Optical coherence tomography angiography (OCTA) is an noninvasive, rapid and reproducible technology which can provide high resolution view of the vascular structures and quantifies the vessel densities in retina and choroid. Myopia can be divided into simple myopia and pathologic myopia. The mechanism of myopia is not clear while it is closely related to the vessel density. For simple myopia, OCTA can monitor the course and deepen the understanding of myopia by quantifying the vessel densities in each layers and sectors and the foveal avascular zone. For pathologic myopia, OCTA has an advantage of observing the choroidal neovascularization, chorioretinal atrophy and Zinn-Haller arterial circle which can contribute to the early diagnosis and management and follow-up to estimate the prognosis. However, there are several limitations of OCTA which need to be improved, including in the process of acquiring high-quality images, accurate layering and dynamic observation.

关键词: 近视/诊断; 近视, 退行性/诊断; 体层摄影术, 光学相干; 综述

Key words: Myopia/diagnosis; Myopia, degenerative/diagnosis; Tomography, optical coherence; Review

引用本文: 孙姣, 王艳玲, 王佳琳. 光相干断层扫描血管成像在近视中的应用研究进展. 中华眼底病杂志, 2018, 34(1): 83-86. doi: 10.3760/cma.j.issn.1005-1015.2018.01.025 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Morgan IG, OhnoMatsui K, Saw SM.Myopia[J]. Lancet, 2012, 379(9827): 1739. DOI: 10.1016/S0140-6736(12)60272-4.
2. Ohno-Matsui K, Lai TYY, Lai CC, et al.Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. DOI: 10.1016/j.preteyeres.2015.12.001.
3. Benaventepérez A, Hosking SL, Logan NS, et al.Ocular blood flow measurements in healthy human myopic eyes[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(11): 1587-1594. DOI: 10.1007/s00417-010-1407-9.
4. Jia Y, Tan O, Jason T, et al.Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
5. Choi W, Moult EM, Waheed NK, et al.Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy[J]. Ophthalmology, 2015, 122(12): 2532-2544. DOI: 10.1016/j.ophtha.2015.08.029.
6. Li M, Yang Y, Jiang H, et al.Retinal microvascular network and microcirculation assessments in high myopia[J]. Am J Ophthalmol, 2017, 174: 56-67. DOI: 10.1016/j.ajo.2016.10.018.
7. Yang Y, Wang J, Jiang H, et al.Retinal microvasculature alteration in high myopia[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6020-6030.DOI: 10.1167/iovs.16-19542.
8. Wang X, Kong X, Jiang C, et al.Is the peripapillary retinal perfusion related to myopia in healthy eyes? A prospective comparative study[J/OL]. BMJ Open, 2016, 6(3): 010791[2016-03-11]. http://bmjopen.bmj.com/content/6/3/e010791.long. DOI: 10.1136/bmjopen-2015-010791.
9. 冯立淼, 杨叶, 胡亮, 等.应用光学相干断层扫描血管成像技术分析近视眼黄斑区微血管变化[J].温州医科大学学报, 2017, 47(6): 391-396. DOI:10.3969/j.issn.2095-9400.2017.06.001.Feng LM, Yang Ye, Hu L, et al.The analysis of macular microvasculature alteration of myopic eyes with optical coherence tomography angiography[J].Journal of Wenzhou Medical University, 2017, 47(6): 391-396. DOI:10.3969/j.issn.2095-9400.2017.06.001.
10. Yasushi I, Satoko F, Yukari J, et al.Choroidal thinning in high myopia measured by optical coherence tomography[J]. Clin Ophthalmol, 2013, 7: 889-893. DOI: 10.2147/OPTH.S44138.
11. Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al.Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2063-2069. DOI: 10.1167/iovs.16-21289.
12. Fan H, Chen HY, Ma HJ, et al.Reduced macular vascular density in myopic eyes[J]. Chin Med J (Engl), 2017, 130(4): 445-451.DOI: 10.4103/0366-6999.199844.
13. Mo J, Duan AL, Chan SY, et al.Application of optical coherence tomography angiography in assessment of posterior scleral reinforcement for pathologic myopia[J]. Int J Ophthalmol, 2016, 9(12): 1761-1765. DOI: 10.18240/ijo.2016.12.10.
14. Sayanagi K, Ikuno Y, Uematsu S, et al.Features of the choriocapillaris in myopic maculopathy identified by optical coherence tomography angiography[J]. Br J Ophthalmol, 2017, 101(11): 1524-1529. DOI: 10.1136/bjophthalmol-2016-309628.
15. Leveziel N, Caillaux V, Bastuji-Garin S, et al.Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization[J]. Am J Ophthalmol, 2013, 155(5): 913-919. DOI:10.1016/j.ajo.2012.11.021.
16. Dansingani KK, Tan AC, Gilani F, et al.Subretinal hyperreflective material imaged with optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 169: 235-248. DOI: 10.1016/j.ajo.2016.06.031.
17. Miyata M, Ooto S, Hata M, et al.Detection of myopic choroidal neovascularization using optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 165: 108-114. DOI:10.1016/j.ajo.2016.03.009.
18. Bruyère E, Miere A, Cohen SY, et al.Neovascularization secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101. DOI: 10.1097/IAE.0000000000001456.
19. Liu B, Bao L, Zhang J.Optical coherence tomography angiography of pathological myopia sourced and idiopathic choroidal neovascularization with follow-up[J]. Medicine (Baltimore), 2016, 95(14): 3264. DOI: 10.1097/MD.0000000000003264.
20. Querques G, Corvi F, Querques L, et al.Optical coherence tomography angiography of choroidal neovascularization secondary to pathologic myopia[J]. Dev Ophthalmol, 2016, 56: 101- 106. DOI: 10.1159/000442800.
21. 王敏, 徐格致.相干光断层扫描血管成像对脉络膜新生血管的诊断[J].中国眼耳鼻喉科杂志, 2015, 15(4): 276-279. DOI:10.14166/j.issn.1671-2420.2015.04.014.Wang M, Xu GZ.Diagnosis of choroidal neovascularization with optical coherence tomography angiography[J].Chin J Ophthalmol and Otorhinolaryngol, 2015, 15(4): 276-279. DOI: 10.14166/j.issn.1671-2420.2015.04.014.
22. de Carlo TE, Bonini Filho MA, Chin AT, et al.Spectral-domain optical coherence tomography angiography of choroidal neovascularization[J].Ophthalmology, 2015, 122(6): 1228-1238. DOI: 10.1016/j.ophtha.2015.01.029.
23. Louzada RN, Ferrara D, Novais EA, et al.Analysis of scleral feeder vessel in myopic choroidal neovascularization using optical coherence tomography angiography[J].Ophthalmic Surg Lasers Imaging Retina, 2016, 47(10): 960-964. DOI: 10.3928/23258160-20161004-11.
24. 李倩, 陈长征, 苏钰, 等.OCT血管成像术在病理性近视黄斑新生血管病变诊疗中的应用价值[J].中华实验眼科杂志, 2016, 34(12): 1102-1106. DOI:10.3760/cma.j.issn.2095-0160.2016.12.011.Li Q, Chen CZ, Su Y, et al.Clinical values of OCT angiography in imaging of chroidal neovascularization in pathological myopic maculopathy[J]. Chin J Exp Ophthalmol, 2016, 34(12): 1102-1106.DOI:10.3760/cma.j.issn.2095-0160.2016.12.011.
25. 蔡萌, 田野, 王雅丽, 等.OCTA在玻璃体腔注射雷珠单抗治疗PM脉络膜新生血管中的应用[J].国际眼科杂志, 2017, 17(10): 1945-1948.DOI:10.3980/j.issn.1672-5123.2017.10.38.Cai M, Tian Y, Wang YL, et al.Role of optical coherence tomography angiography in myopic choroidal neovascularization after intravitreal injections of ranibizumab[J].Int Eye Sci, 2017, 17(10): 1945-1948. DOI:10.3980/j.issn.1672-5123.2017.10.38.
26. 陈秋莹, 贺江南, 华怡红, 等.高度近视继发视盘周围脉络膜空腔视盘血流密度的变化[J]. 国际眼科杂志, 2017, 17(7): 1307-1312. DOI:10.3980/j.issn.1672-5123.2017.7.28.Chen QY, He JN, Hua YH, et al.Peripapillary vessel density and the relevant factors in highly myopic eyes with peripapillary intrachoroidal cavitation[J].Int Eye Sci, 2017, 17(7): 1307-1312. DOI:10.3980/j.issn.1672-5123.2017.7.28.
27. Chen Q, He J, Hua Y, et al.Exploration of peripapillary vessel density in highly myopic eyes with peripapillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomography angiography[J/OL].Clin Exp Ophthalmol, 2017, 217:E1[2017-05- 11] . http://onlinelibrary.wiley.com/doi/10.1111/ceo.12986/abstract;jsessionid=3792F2510B815B6BBC8153FC94D51B6B.f04t02. DOI:10.1111/ceo.12986.[publishedonline ahead of print].
28. Ishida T, Jonas JB, Ishii M, et al.Peripapillary arterial ring of zinn-haller in highly myopic eyes as detected by optical coherence tomography angiography[J]. Retina, 2016, 37(2): 299-304. DOI: 10.1097/IAE.0000000000001165.
29. Sampson DM, Gong P, An D, et al.Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3065-3072. DOI: 10.1167/iovs.17-21551.