中华眼底病杂志

中华眼底病杂志

光相干断层扫描血管成像在糖尿病视网膜病变诊断中的应用研究进展

查看全文

光相干断层扫描(OCT)血管成像是在OCT基础上优化并结合血管成像方法,将视网膜血管组织和神经组织进行对比显像而获取的高分辨率视网膜循环图像,可实现视网膜脉络膜血管分层成像。对于早期糖尿病视网膜病变(DR),通过观察黄斑中心凹无血管区形态、视网膜血管密度变化以及视网膜微动脉瘤数量可对非增生型DR进行量化评估。对于晚期DR,通过视网膜新生血管形态变化和累及部位可对疾病进展和预后进行客观评价。了解不同病程DR特征性病变的OCT血管成像图像特征,可为DR的诊断和治疗效果评估提供参考价值。

Optical coherence tomography angiography (OCTA) base on OCT with an algorithm that can image a high-resolution picture of retinal circulation. OCTA has allowed quantifying the characteristic lesions of diabetic retinopathy (DR) in early stage, such as fovea avascular zone, retinal vascular density and the counts of retinal microaneurysm. In addition, OCTA can objectively evaluate the progression and prognosis of DR in late stage through imaging involved retinal neovascularization. Understanding OCT angiography features of DR lesions with different course of the disease may provide reference value for the diagnosis and treatment of DR.

关键词: 糖尿病视网膜病变/诊断; 局部血流; 体层摄影术, 光学相干; 综述

Key words: Diabetic retinopathy/diagnosis; Regional blood flow; Tomography, optical coherence; Review

引用本文: 邬嘉蔚, 柯晓云, 符敏. 光相干断层扫描血管成像在糖尿病视网膜病变诊断中的应用研究进展. 中华眼底病杂志, 2018, 34(1): 86-89. doi: 10.3760/cma.j.issn.1005-1015.2018.01.026 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. 王敏. 利用光相干断层扫描血管成像技术优势, 提升视网膜脉络膜血管疾病认知水平[J]. 中华眼底病杂志, 2016, 32(4): 353-356. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.003.Wang M. Better understanding retinal and choroidal vascular diseases with optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2016, 32(4): 353-356.
2. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
3. Gao SS, Liu G, Huang D, et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system [J]. Optics Letters, 2016, 41(3): 496. DOI: 10.1364/OL.40.002305.
4. Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison [J]. J Biomed Opt, 2015, 20(10): 100901. DOI: 10.1117/1.JBO.20.10.100901.
5. Krawitz BD, Mo S, Geyman LS, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography[J]. Vision Res, 2017, 139: 177-186.DOI: 10.1016/j.visres.2016.09.019.
6. Gong D, Yu W, Zhang X, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography [J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(5): 873-879. DOI: 10.1007/s00417-015-3143-7.
7. Freiberg FJ, Pfau M, Wins J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy [J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(6): 1051-1058.DOI: 10.1007/s00417-015-3148-2.
8. Takase N, Nozaki M, Kato A, et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2377-2383. DOI: 10.1097/IAE.0000000000000849.
9. 王健, 陈松, 何广辉, 等. 无明显糖尿病视网膜病变的2型糖尿病患者黄斑区微血管改变的光相干断层扫描血管成像观察[J]. 中华眼底病杂志, 2017, 33(1): 15-18.DOI: 10.3760/cma.j.issn.1005-1015.2017.01.005.Wang J, Chen S, He GH, et al. Observation of macular microvascular changes in eyes of patients of type 2 diabetes without clinical features of diabetic retinopathy by optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2017, 33(1): 15-18. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.005.
10. McLeod DS, Lefer DJ, Merges C, et al. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid [J]. Am J Pathol, 1995, 147(3): 642-653.
11. Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition [J]. Proc Natl Acad Sci USA, 1999, 96(19): 10836-10841.
12. Mendis KR, Balaratnasingam C, Yu P,et al.Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail[J].Invest Ophthalmol Vis Sci,2010,51(11):5864-5869. DOI: 10.1167/iovs.10-5333.
13. Sambhav K, Abu-Amero KK, Chalam KV. Deep capillary macular perfusion indices obtained with OCT angiography correlate with degree of nonproliferative diabetic retinopathy[J]. Eur J Ophthalmol, 2017, 27(6): 716-729.DOI: 10.5301/ejo.5000948.
14. Simonett JM, Scarinci F, Picconi F, et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus [J/OL]. Acta Ophthalmologica, 2017, 2017: E1[2017-02-16]. http://onlinelibrary.wiley.com/doi/10.1111/aos.13404/abstract;jsessionid=BCD384AE3E45A96CECF048CE18BB4706.f02t04. DOI: 10.1111/aos.13404.[Epublishedonline ahead of print].
15. Kim AY, Chu Z, Shahidzadeh A, et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 362-370.DOI: 10.1167/iovs.15-18904.
16. Haritoglou C, Kernt M, Neubauer A, et al. Microaneurysm formation rate as a predictive marker for progression to clinically significant macular edema in nonproliferative diabetic retinopathy[J]. Retina, 2014, 34(1): 157-164. DOI: 10.1097/IAE.0b013e318295f6de.
17. Nunes S, Pires I, Rosa A, et al. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: findings for type 2 diabetics with nonproliferative retinopathy[J]. Ophthalmologica, 2009, 223(5): 292-297.DOI: 10.1159/000213639.
18. Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44. DOI: 10.1016/j.ajo.2015.04.021.
19. Hasegawa N, Nozaki M, Takase N, et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 348-355.DOI: 10.1167/iovs.15-18782.
20. Moore J, Bagley S, Ireland G, et al. Three dimensional analysis of microaneurysms in the human diabetic retina [J]. J Anat, 1999, 194 (Pt 1): 89-100.
21. Couturier A, Mané V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2384-2391.DOI: 10.1097/IAE.0000000000000859.
22. Soares M, Neves C, Marques IP, et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography[J]. Br J Ophthalmol, 2017, 101(1): 62-68. DOI: 10.1136/bjophthalmol-2016-309424.
23. Tokayer J, Jia Y, Dhallaa H, et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography [J]. Biomed Opt Express, 2013, 4(10): 1909-1924. DOI: 10.1364/BOE.4.001909.eCollection 2013.
24. Stitt AW, Gardiner TA, Archer DB. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients [J]. Br J Ophthalmol, 1995, 79(4): 362-367.
25. 张惠蓉, 刘宁朴.眼底病图谱[M]. 北京: 人民卫生出版社, 2007: 157-158.Zhang HR, Liu NP. Atlas of ocular fundus diseases[M]. Beijing: People’s Medical Publishing House, 2007: 157-158.
26. Hwang TS, Jia Y, Gao SS, et al. Optical coherence tomography angiography features of diabetic retinopathy[J]. Retina, 2015, 35(11): 2371-2376.DOI: 10.1097/IAE.0000000000000716.
27. Schaal KB, Munk MR, Wyssmueller I, et al. Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging [J/OL]. Retina, 2017, 2017: E1[2017-11-10]. https://insights.ovid.com/pubmed?pmid=29135803.DOI: 10.1097/IAE.0000000000001938.[Epublishedonline ahead of print].
28. de Carlo TE, Bonini Filho MA, Baumal CR, et al. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography [J]. Ophthalmic Surg Lasers Imaging Retina, 2016, 47(2): 115-119. DOI: 10.3928/23258160-20160126-03.
29. Suzuma K, Tsuiki E, Matsumoto M, et al. Retro-mode imaging of fibrovascular membrane in proliferative diabetic retinopathy after intravitreal bevacizumab injection[J]. Clin Ophthalmol, 2011, 5: 897-900. DOI: 10.2147/OPTH.S22843.
30. Kohno R, Hata Y, Mochizuki Y, et al. Histopathology of neovascular tissue from eyes with proliferative diabetic retinopathy after intravitreal bevacizumab injection[J]. Am J Ophthalmol, 2010, 150(2): 223-229. DOI: 10.1016/j.ajo.2010.03.016.
31. Stanga PE, Papayannis A, Tsamis E, et al. New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography[J]. Dev Ophthalmol, 2016, 56: 113-121. DOI: 10.1159/000442802.