中华眼底病杂志

中华眼底病杂志

25G+微创玻璃体手术治疗孔源性视网膜脱离及增生型糖尿病视网膜病变后短期眼压变化及影响因素分析

查看全文

目的 观察25G+玻璃体切割手术(PPV)治疗孔源性视网膜脱离(RRD)及增生型糖尿病视网膜病变(PDR)手术后短期眼压变化,初步探讨其影响因素。 方法 回顾性病例分析。行25G+PPV治疗的连续RRD、PDR患者160例163只眼纳入研究。其中,男性88例89只眼,女性72例74只眼;平均年龄(50.37±13.24)岁。RRD患者90例92只眼(RRD组),PDR患者70例71只眼(PDR组)。所有患眼均行最佳矫正视力(BCVA)、眼压检查。患眼BCVA手动~0.6;平均眼压为(12.61±4.91)mmHg(1 mmHg=0.133 kPa)。RRD组、PDR组患者之间性别构成(χ2=0.314)、年龄分布(χ2=5.682)比较,差异无统计学意义(P=0.635、0.056);晶状体状态(χ2=9.285)、眼压(χ2=58.450)、有无PPV(χ2=4.915)及有无高血压病史(χ2=24.018)比较,差异有统计学意义(P=0.009、0.000、0.027、0.000)。 采用非接触式眼压计测量手术前,手术后1、3 d眼压。以眼压≤5 mmHg为重度低眼压;6~9 mmHg为轻度低眼压;10~21mmHg为正常眼压;22~29 mmHg为轻度高眼压;眼压≥30 mmHg为重度高眼压。采用多因素logistic回归分析手术后眼压变化的相关因素。 结果 163只眼中,手术后1 d,轻度低眼压、正常眼压、轻度高眼压、重度高眼压分别为21、96、22、24只眼,分别占12.9%、58.9%、13.4、14.7%;手术后3 d,轻度低眼压、正常眼压、轻度高眼压、重度高眼压分别为18、117、23、5只眼,分别占11.0%、71.7%、14.1%、3.1%。手术后1、3 d,PDR组、RRD组患眼之间眼压比较,差异均无统计学意义(Z=−1.235、−1.642,P=0.217、0.101)。多因素logistic回归分析结果显示,对于PDR组患眼,手术后1 d,填充硅油是高眼压发生的危险因素[比值比(OR)=15.400,95%可信区间(CI)3.670~64.590;P<0.001];手术后3 d,手术前人工晶状体是低眼压发生的危险因素(OR=19.000,95%CI 1.450~248.2;P=0.025)。对于RRD组患眼,手术后3 d,手术前低眼压是高眼压发生的危险因素(OR=3.755,95%CI 1.088~12.955;P=0.036)。对于全部患眼,手术后1 d,填充硅油(OR=0.236,95%CI 0.070~0.797)、空气(OR=0.214,95%CI 0.050~0.911)、惰性气体(OR=0.092,95%CI 0.010~0.877)是低眼压发生的保护因素(P=0.020、0.037、0.038)。手术后3 d,填充硅油、手术前无晶状体分别是低眼压发生的保护因素(OR=0.249,95%CI 0.066~0.940;P=0.040)和危险因素(OR=7.765,95%CI 1.377~43.794;P=0.020);手术前低眼压是高眼压发生的危险因素(OR=4.034,95%CI 1.475~11.033;P=0.007)。 结论 25G+PPV后早期眼压异常发生率为28.3%~31.1%。眼内填充硅油、空气、惰性气体是手术后低眼压发生的保护因素;手术前无晶状体是手术后低眼压发生的危险因素;眼内填充硅油和手术前低眼压是手术后高眼压发生的危险因素。

Objective To observe the short-term intraocular pressure after 25G+ pars plana vitrectomy (PPV) and analyze the possible influencing factors in rhegmatogenous retinal detachment (RRD) and proliferative diabetic retinopathy (PDR) eyes. Methods This is a retrospective case-control study. A total of 160 patients (163 eyes) of RRD and PDR who underwent 25G+ PPV were enrolled in this study. There were 88 males (89 eyes) and 72 females (74 eyes), with the mean age of (50.37±13.24) years. There were 90 patients (92 eyes) with RRD (the RRD group) and 70 patients (74 eyes) with PDR (the PDR group). Best corrected visual acuity (BCVA) and intraocular pressure (IOP) were performed on all the patients. The BCVA was ranged from hand motion to 0.6. The average IOP was (12.61±4.91) mmHg (1 mmHg=0.133 kPa). There were significant differences in crystalline state (χ2=9.285, P=0.009), IOP (χ2=58.45, P=0.000), history of PPV (χ2=4.915, P=0.027) and hypertension (χ2=24.018, P=0.000), but no significant difference in sex (χ2=0.314, P=0.635) and age (χ2=5.682, P=0.056) between the two groups. A non-contact tonometer has been used to measure IOP on postoperative day 1 and 3. The postoperative IOP distribution has been divided into five groups: severe ocular hypotension (≤5 mmHg), mild ocular hypotension (6 - 9 mmHg), normal (10 - 21 mmHg), mild ocular hypertension (22 - 29 mmHg), severe ocular hypertension (≥30 mmHg). Logistic regression analysis has been used to analyze the risk and protective factors. Results On the first day after surgery, there were 21 eyes (12.9%) in mild ocular hypotension, 96 eyes (58.9%) in normal, 22 eyes (13.4%) in mild ocular hypertension and 24 eyes (14.7%) in severe ocular hypertension. On the first day after surgery, there were 18 eyes (11.0%) in mild ocular hypotension, 117 eyes (71.7%) in normal, 23 eyes (14.1%) in mild ocular hypertension and 5 eyes (3.1%) in severe ocular hypertension. There was no significant difference of IOP distribution between the two groups (Z=−1.235, −1.642; P=0.217, 0.101). The results of logistic regression analysis showed that silicone tamponade was a risk factor for ocular hypertension in PDR eyes on the first day after surgery [odds ratio (OR)=15.400, 95% confidence interval (CI) 3.670 - 64.590; P<0.001], while intraocular lens was the risk factor for ocular hypotension in PDR eyes on third day after surgery (OR=19.000, 95%CI 1.450 - 248.2; P=0.025). As for RRD eyes, the ocular hypotension before surgery was a risk factor for ocular hypertension on the third day after surgery (OR=3.755, 95%CI 1.088 - 12.955; P=0.036). For all eyes, silicone tamponade (OR=0.236, 95%CI 0.070 - 0.797), air tamponade (OR=0.214, 95%CI 0.050 - 0.911) and inert gas tamponade (OR=0.092, 95%CI 0.010 - 0.877) were protective factors for ocular hypotension on the first day after surgery (P=0.020, 0.037, 0.038); silicone tamponade was protective factor for ocular hypotension on the third day after surgery (OR=0.249, 95% CI 0.066 - 0.94, P=0.040); while aphakic eyes was the risk factor for ocular hypotension on third day after surgery (OR=7.765, 95% CI 1.377 - 43.794, P=0.020). The ocular hypotension before surgery was a risk factor for ocular hypertension on the third day after surgery (OR=4.034, 95% CI 1.475 - 11.033, P=0.007). Conclusions The abnormal IOP is common after 25G+ PPV with a rate from 28.3% to 31.1%. Silicone tamponade, air tamponade and inert gases tamponade are protective factors for postoperative ocular hypotension, aphakic eye is risk factor for postoperative ocular hypotension. Ocular hypotension before surgery and silicone oil tamponade are risk factors for postoperative ocular hypertension.

关键词: 玻璃体视网膜手术/副作用; 眼内压; 糖尿病视网膜病变/外科学; 视网膜脱离/外科学; 影响因素分析

Key words: Vitreoretinal surgery/adverse effects; Intraocular pressure; Diabetic retinopathy/surgery; Retinal detachment/surgery; Root cause analysis

引用本文: 沈畅, 李芸云, 刘宁朴. 25G+微创玻璃体手术治疗孔源性视网膜脱离及增生型糖尿病视网膜病变后短期眼压变化及影响因素分析. 中华眼底病杂志, 2018, 34(2): 124-130. doi: 10.3760/cma.j.issn.1005-1015.2018.02.005 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Machemer R, Aaberg TM, Freeman HM, et al.An updated classification of retinal detachment with proliferative vitreoretinopathy[J].Am J Ophthalmol, 1991, 112(2): 159-165.
2. Wilkinson CP, Iii FLF, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
3. Khanduja S, Kakkar A, Majumdar S, et al. Small gauge vitrectomy: recent update[J]. Oman J Ophthalmol, 2013, 6(1): 3-11. DOI: 10.4103/0974-620X.111893.
4. Bamonte G, Mura M, Stevie TH. Hypotony after 25-gauge vitrectomy[J]. Am J Ophthalmol, 2011, 151(1): 156-160. DOI: 10.1016/j.ajo.2010.06.042.
5. Takashina H, Watanabe A, Tsuneoka H. Influence of silicone oil tamponade on self-sealing sclerotomy using 25-gauge transconjunctival sutureless vitrectomy: a retrospective comparative study[J]. BMC Ophthalmol, 2015, 15: 171. DOI: 10.1186/s12886-015-0159-z.
6. Takashina H, Watanabe A, Tsuneoka H. Perioperative changes of the intraocular pressure during the treatment of epiretinal membrane by using 25- or 27-gauge sutureless vitrectomy without gas tamponade[J]. Clin Ophthalmol, 2017, 11: 739-743. DOI: 10.2147/OPTH.S133775.
7. Gosse E, Newsom R, Hall P, et al. Changes in day 1 post-operative intraocular pressure following sutureless 23-gauge and conventional 20-gauge pars plana vitrectomy[J]. Open Ophthalmol J, 2013, 7: 42-47. DOI: 10.2174/1874364101307010042.
8. Kim M, Park YS, Lee DH, et al. Comparison of surgical outcome of 23-gauge and 25-gauge microincision vitrectomy sugery for management of idiopathy epiretinal membrane in pseudophakic eyes[J]. Retina, 2015, 35(10): 2115-2120. DOI: 10.1097/IAE.0000000000000598.
9. Wu L, Berrocal MH, Rodriguez FJ, et al. Intraocular pressure elevation after uncomplicated pars plana vitrectomy: results of the Pan American Collaborative Retina Study Group[J]. Retina, 2014, 34(10): 1985-1989. DOI: 10.1097/IAE.0000000000000189.
10. Hasegawa Y, Okamoto F, Sugiura Y, et al. Intraocular pressure elevation after vitrectomy for various vitreoretinal disorders[J]. Eur J Ophthalmol, 2014, 24(2): 235-241. DOI: 10.5301/ejo.5000350.
11. Lv Z, Li Y, Wu Y, et al. Surgical complications of primary rhegmatogenous retinal detachment: a meta-analysis[J/OL]. PLoS One, 2015, 10(3): 116493[2015-03-03]. https://doi.org/10.1371/journal.pone.0116493. DOI: 10.1371/journal.pone.0116493.
12. Muether PS, Hoerster R, Kirchhof B, et al. Course of intraocular pressure after vitreoretinal surgery: is early postoperative intraocular pressure elevation predictable?[J]. Retina, 2011, 31(8): 1545-1552. DOI: 10.1097/IAE.0b013e31820f4b05.
13. Matic S, Suic SP, Biuk D, et al. Influence of silicone oil tamponade after vitrectomy on intraocular pressure[J]. Coll Antropol, 2013, 37 Suppl 1: S227-235.
14. Antoun J, Azar G, Jabbour E, et al. Vitreoretinal surgery with silicone oil tamponade in primary uncomplicated rhegmatogenous retinal detachment: clinical outcomes and complications[J]. Retina, 2016, 36(10): 1906-1912. DOI: 10.1097/IAE.0000000000001008.
15. Hunt K, Bajekal R, Calder I, et al. Changes in intraocular pressure in anesthetized prone patients[J]. J Neurosurg Anesthesiol, 2004, 16(4): 287-290.
16. Tahiri JHR, El SM, Adam R, et al. Influence of sutureless 23-gauge sclerotomy architecture on postoperative intraocular pressure decrease: results of a multivariate analysis[J]. Graefe’s Arch Clin Exp Ophthalmol, 2013, 251(5): 1285-1292. DOI: 10.1007/s00417-012-2183-5.
17. Cho GE, Cho HY, Kim YT. Change in subfoveal choroidal thickness after argon laser panretinal photocoagulation[J]. Int J Ophthalmol, 2013, 6(4): 505-509. DOI: 10.3980/j.issn.2222-3959.2013.04.18.
18. Woo SJ, Park KH, Hwang JM, et al. Risk factors associated with sclerotomy leakage and postoperative hypotony after 23-gauge transconjunctival sutureless vitrectomy[J]. Retina, 2009, 29(4): 456-463. DOI: 10.1097/IAE.0b013e318195cb28.
19. Hornova J, Baxant A. Contemporary possibilities of intraocular pressure measurement[J]. Cesk Slov Oftalmol, 2013, 69(4): 175-180.