中华眼底病杂志

中华眼底病杂志

沉默信号调节蛋白6参与的自噬在年龄相关性视网膜疾病中的作用研究现状及进展

查看全文

年龄相关性视网膜病变是老年人主要的致盲原因之一。自噬作为细胞代谢的重要途径,主要通过对受损细胞器和细胞内大分子物质的降解和循环利用来维持细胞内环境稳定。研究其机制在一定程度上可以对延缓衰老的进程起作用,减少年龄相关性疾病的发生。在哺乳动物体内,沉默信号调节蛋白(SIRT)6发挥其去乙酰化酶和核糖基转移酶活性参与多条信号通路的调控,抑制细胞衰老、肿瘤形成、代谢疾病,参与细胞寿限的调节,对组织和器官的结构和功能有着重要的影响。SIRT6主要通过胰岛素样生长因子-蛋白激酶B-哺乳动物雷帕霉素靶点通路调节细胞内自噬水平,减少代谢物质的毒性累积及细胞衰老。SIRT6在年龄相关性视网膜疾病中的作用方式需要与疾病的遗传背景、发病机制、临床表现等相结合,期待在后续的研究中加以深入。

Age-related macular degeneration is one of the major causes of blindness in the elderly. As an important pathway of cell metabolism, autophagy maintains intracellular homeostasis through the degradation and recycle of damaged organelles and macromolecules. Understanding its mechanism may promote discoveries to delay aging process, reduce the incidence of age-related diseases. In mammals, silent information regulator protein 6 (SIRT6) plays its deacetylase and ribonucleotransferase activity in multiple signaling pathways, including inhibition of cellular senescence, tumorigenesis, metabolic diseases, regulating cellular lifespan. It has a significant impact on the structure and function of tissues and organs. SIRT6 regulates intracellular autophagy mainly through the insulin-like growth factor-protein kinase B-mammalian target of rapamycin, reducing the accumulation of toxic metabolites and cellular senescence. The function of SIRT6 in age-related macular degeneration need to be combined with the genetic background, pathogenesis, clinical manifestations and other aspects of the disease, and it is expected to be further studied in subsequent studies.

关键词: 抗衰老酶; 自噬; 衰老; 黄斑变性; 糖尿病视网膜病变

Key words: Sirtuins; Autophagy; Aging; Macular degeneration; Diabetic retinopathy

引用本文: 冯一吉, 罗学廷, 孙晓东. 沉默信号调节蛋白6参与的自噬在年龄相关性视网膜疾病中的作用研究现状及进展. 中华眼底病杂志, 2018, 34(2): 198-201. doi: 10.3760/cma.j.issn.1005-1015.2018.02.026 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy[J]. Dev Cell, 2004, 6(4): 463-477.
2. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12 Suppl 2: S1542-1552. DOI: 10.1038/sj.cdd.4401765.
3. Zhang J, Bai Y, Huang L, et al. Protective effect of autophagy on human retinal pigment epithelial cells against lipofuscin fluorophore A2E: implications for age-related macular degeneration[J/OL]. Cell Death Dis, 2015, 6: 1972[2015-11-12]. http://dx.doi.org/10.1038/cddis.2015.330. DOI:10.1038/cddis.2015.330.
4. Liu J, Copland DA, Theodoropoulou S, et al. Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis[J/OL]. Sci Rep, 2016, 6: 20639[2016-02-05]. http://dx.doi.org/10.1038/srep20639. DOI:10.1038/srep20639.
5. Jia G, Su L, Singhal S, et al. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging[J]. Mol Cell Biochem, 2012, 364(1-2): 345-350. DOI:10.1007/s11010-012-1236-8.
6. Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice[J]. Nature, 2012, 483(7388): 218-221. DOI:10.1038/nature10815.
7. Yu SS, Cai Y, Ye JT, et al. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-kappaB-dependent transcriptional activity[J]. Br J Pharmacol, 2013, 168(1): 117-128. DOI:10.1111/j.1476-5381.2012.01903.x.
8. Ban N, Ozawa Y, Inaba T, et al. Light-dark condition regulates sirtuin mRNA levels in the retina[J]. Exp Gerontol, 2013, 48(11): 1212-1217. DOI:10.1016/j.exger.2013.04.010.
9. Orellana ME, Quezada C, Maloney SC, et al. Expression of SIRT2 and SIRT6 in retinoblastoma[J]. Ophthalmic Res, 2015, 53(2): 100-108. DOI:10.1159/000368718.
10. Ravikumar B, Futter M, Jahreiss L, et al. Mammalian macroautophagy at a glance[J]. J Cell Sci, 2009, 122(Pt 11): 1707-1711. DOI:10.1242/jcs.031773.
11. Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1): 27-42.
12. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery[J]. Mol Biol Cell, 2009, 20(7): 1992-2003. DOI:10.1091/mbc.E08.
13. Li X, He L, Che KH, et al. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG[J/OL]. Nat Commun, 2012, 3: 662[2012-02-07]. http://dx.doi.org/10.1038/ncomms1648. DOI:10.1038/ncomms1648.
14. Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease--locating the primary defect[J]. Neurobiol Dis, 2011, 43(1): 38-45. DOI:10.1016/j.nbd.2011.01.021.
15. Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and Foxo signaling[J]. Cell, 2013, 154(2): 430-441. DOI:10.1016/j.cell.2013.06.016.
16. Cuervo AM, Bergamini E, Brunk UT, et al. Autophagy and aging: the importance of maintaining "clean" cells[J]. Autophagy, 2005, 1(3): 131-140.
17. Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity?[J]. Nat Cell Biol, 2010, 12(9): 842-846. DOI:10.1038/ncb0910-842.
18. Taneike M, Yamaguchi O, Nakai A, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy[J]. Autophagy, 2010, 6(5): 600-606. DOI:10.4161/auto.6.5.11947.
19. Vellai T. Autophagy genes and ageing[J]. Cell Death Differ, 2009, 16(1): 94-102. DOI:10.1038/cdd.2008.126.
20. Simonsen A, Cumming RC, Brech A, et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila[J]. Autophagy, 2008, 4(2): 176-184.
21. Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging[J]. Circ Res, 2014, 114(2): 368-378. DOI:10.1161/circresaha.113.300536.
22. Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration[J]. Mol Aspects Med, 2012, 33(4): 399-417. DOI:10.1016/j.mam.2012.03.009.
23. Sanchez-Fidalgo S, Villegas I, Sanchez-Hidalgo M, et al. Sirtuin modulators: mechanisms and potential clinical implications[J]. Curr Med Chem, 2012, 19(15): 2414-2441.
24. Shao J, Yang X, Liu T, et al. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290. DOI:10.1007/s13238-016-0257-6.
25. Lerrer B, Cohen HY. The guardian: metabolic and tumour-suppressive effects of SIRT6[J]. EMBO J, 2013, 32(1): 7-8. DOI:10.1038/emboj.2012.332.
26. Lyssiotis CA, Cantley LC. SIRT6 puts cancer metabolism in the driver’s seat[J]. Cell, 2012, 151(6): 1155-1156. DOI:10.1016/j.cell.2012.11.020.
27. Cardus A, Uryga AK, Walters G, et al. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence[J]. Cardiovasc Res, 2013, 97(3): 571-579. DOI:10.1093/cvr/cvs352.
28. Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006, 124(2): 315-329. DOI:10.1016/j.cell.2005.11.044.
29. Berryman DE, Christiansen JS, Johannsson G, et al. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models[J]. Growth Horm IGF Res, 2008, 18(6): 455-471. DOI:10.1016/j.ghir.2008.05.005.
30. Zhong L, D’urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha[J]. Cell, 2010, 140(2): 280-293. DOI:10.1016/j.cell.2009.12.041.
31. Silberman DM, Ross K, Sande PH. SIRT6 is required for normal retinal function[J/OL]. PLoS One, 2014, 9(6): 98831[2014-06-04]. http://dx.plos.org/10.1371/journal.pone.0098831. DOI: 10.1371/journal.pone.0098831.
32. Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun[J]. Nat Med, 2012, 18(11): 1643-1650. DOI:10.1038/nm.2961.
33. Xiao C, Wang RH, Lahusen TJ, et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice[J]. J Biol Chem, 2012, 287(50): 41903-41913. DOI:10.1074/jbc.M112.415182.
34. Rodriguez-Muela N, Koga H, Garcia-Ledo L, et al. Balance between autophagic pathways preserves retinal homeostasis[J]. Aging cell, 2013, 12(3): 478-488. DOI:10.1111/acel.12072.
35. Krohne TU, Stratmann NK, Kopitz J, et al. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells[J]. Exp Eye Res, 2010, 90(3): 465-471. DOI:10.1016/j.exer.2009.12.011.
36. Feng Y, Liang J, Zhai Y, et al. Autophagy activated by SIRT6 regulates Abeta induced inflammatory response in RPEs[J]. Biochem Biophys Res Commun, 2018, 496(4): 1148-1154. DOI:10.1016/j.bbrc.2018.01.159.
37. Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes[J]. Aging, 2012, 4(3): 166-175.
38. Wang L, Ebrahimi KB, Chyn M, et al. Biology of p62/sequestosome-1 in age-related macular degeneration (AMD)[J]. Adv Exp Med Biol, 2016, 854: 17-22. DOI:10.1007/978-3-319-17121-0_3.
39. Wang Y, Hanus JW, Abu-Asab MS, et al. NLRP3 upregulation in retinal pigment epithelium in age-related macular degeneration[J/OL]. Int J Mol Sci, 2016, 17(1): 73[2016-01-08]. http://www.mdpi.com/resolver?pii=ijms17010073. DOI:10.3390/ijms17010073.
40. Tanaka Y, Kume S, Kitada M, et al. Autophagy as a therapeutic target in diabetic nephropathy[J/OL]. Exp Diabetes Res, 2012, 2012: 628978[2011-10-19]. https://dx.doi.org/10.1155/2012/628978. DOI:10.1155/2012/628978.
41. Wang W, Wang Q, Wan D, et al. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy[J]. Autophagy, 2017, 13(5): 941-954. DOI:10.1080/15548627.2017.1293768.
42. Mao J, Xia Q, Liu C, et al. A critical role of Hrd1 in the regulation of optineurin degradation and aggresome formation[J]. Hum Mol Genet, 2017, 26(10): 1877-1889. DOI:10.1093/hmg/ddx096.
43. Takasaka N, Araya J, Hara H, et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence[J]. J Immunol, 2014, 192(3): 958-968. DOI:10.4049/jimmunol.1302341.