中华眼底病杂志

中华眼底病杂志

光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景

查看全文

光相干断层扫描血管成像(OCTA)是在光相干断层扫描基础上发展而来的眼病诊断新技术,也是目前眼科影像学检查中发展最快速的检查方法之一。OCTA的检测过程是基于眼部组织的解剖结构,自应用于临床以来已对多种眼底疾病的诊疗起到了重要作用。与经典的荧光素眼底血管造影和吲哚青绿血管造影相比,OCTA除了具备无创、快速、高分辨率的特点外,对血流显影的能力不受血管渗漏和视网膜出血的影响,能够提供三维测量的病变图像,并能实现病变的定量检测和分层检测,目前已用于多种眼科疾病的诊断和病情监测。OCTA技术的临床应用加深了眼科影像学对疾病的诊疗信息及发病机制的探索。但与此同时,OCTA存在着因扫描范围较小致其在周边视网膜血流观察的临床应用方面受到限制,投射伪影存在而对脉络膜新生血管等病灶的观察产生一定影响等局限和不足。相信随着OCTA技术的不断发展和进步,其有望取代相关的有创检查方法,成为眼科影像检查的新工具。

Optical coherence tomography angiography (OCTA) is a new diagnostic technique in recent years based on the optical coherence tomography. It is one of the fastest developing imaging examinations in ophthalmology. Compared with the classic diagnostic methods of fundus fluorescein angiography and indocyanine green angiography, OCTA show the ability to reveal blood flow non-invasively. With the development of modern medical detection technology, the requirement for ophthalmic diagnosis is raised, and many new measurement methods begin to apply in research and clinical, which makes the detection methods in the field of ophthalmology more accurate and comfortable. OCTA is a novel and noninvasive flow imaging technique, and it has the advantages of high resolution, fast scanning, as w ell as quantifying blood flow. Meanwhile, this technique can not only qualitatively analyze the shape of ocular blood vessels, but also be able to measure the ocular blood vessels and blood flow non-invasively, as well as to assess the depth of lesions. At present, with a wide clinical application in ophthalmology, OCTA still has its own superiority and weakness, but with the development of technology. It is believed that the OCTA will be expected to replace the relevant invasive examination methods and become a new tool for ophthalmic imaging.

关键词: 体层摄影术,光学相干; 视网膜疾病/诊断; 脉络膜疾病/诊断; 述评

Key words: Tomography, optical coherence; Retinal diseases/diagnosis; Choroid diseases/diagnosis; Editorial

引用本文: 魏文斌, 周楠. 光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景. 中华眼底病杂志, 2018, 34(4): 317-322. doi: 10.3760/cma.j.issn.1005-1015.2018.04.002 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Miwa Y, Murakami T, Suzuma K, et al. Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography[J/OL]. Sci Rep, 2016, 6: 29064[2016-01-28].http://dx.doi.org/10.1038/srep29064. DOI: 10.1038/srep29064.
2. Ang M, Cai Y, Shahipasand S, et al. En face optical coherence tomography angiography for corneal neovascularisation[J]. Br J Ophthalmol, 2016, 100(5): 616-621. DOI: 10.1136/bjophthalmol-2015-307338.
3. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725.DOI: 10.1364/OE.20.004710.
4. Huang Y, Zhang Q, Thorell MR, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(5): 382-389. DOI: 10.3928/23258160-20140909-08.
5. Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA ophthalmol, 2015, 133(1): 45-50.DOI: 10.1001/jamaophthalmol.2014.3616.
6. Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-ralated macular degeneration[J]. Opthalmology, 2014, 121(7): 1435-1444. DOI:10.1016/j.ophtha.2014.01.034.
7. Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Pro Natl Acad Sci USA, 2015,112(18): 2395-2402. DOI:10.1073/pnas.1500185112.
8. Wang Q, Chan S, Yang JY, et al. Vasular density in retina and chaoriocapillaries as measured by optical coherence tomography angiography[J]. Am J Ophthalmol, 2016,168: 95-109. DOI: 10.1016/j.ajo.2016.05.005.
9. Yu J, Jiang C, Wang X, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiography angiogram study[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3212-3217. DOI: 10.1167/iovs.14-16270.
10. Chen Q, Yu X, Sun Z, et al. The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization [J/OL]. J Ophthalmol, 2016, 2016: 5608250[2016-07-04]. https://dx.doi.org/10.1155/2016/5608250. DOI: 10.1155/2016/5608250.
11. Wang Q, Chan S, Jonas, et al. Optical coherence tomography angiography in idiopathic choroidal neovascularization[J]. Acta Opthalmol, 2016, 94(4): 415-417. DOI: 10.1111/aos.12841.
12. Takase N, Nozaki M, Kato A, et al. Enlagement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2377-2383. DOI: 10.1097/IAE.0000000000000849.
13. Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015,160(1): 35-44.DOI: 10.1016/j.ajo.2015.04.021.
14. Chen SY, Wang Q, Wei WB, et al. Optical coherence tomography angiography in central serous chorioretinopathy[J]. Retina, 2016, 36(11): 2051-2058. DOI: 10.1016/j.ajo.2015.04.021.
15. Quaranta-El Martouhi M, El Maftouhi A, Eandi CM. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography[J]. Am J Ophthamol, 2015, 160(3): 581-587. DOI: 10.1016/j.ajo.2015.06.016.
16. Wang W, Zhou Y, Gao SS, et al. Evalutating polypoidal choroidal vasculopathy with ptical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016,57(9): 526-532. DOI: 10.1167/iovs.15-18955.
17. Kim JY, Kwon OW, Oh HS, et al. Optical coherence tomography angiography in patients with polypoidal choroidal vasculopathy[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(8): 1505-1510. DOI: 10.1007/s00417-015-3228-3.
18. Srour M, Querques G, Semoun O, et al. Optical coherence tomography angiography characteristics of polypoidal choroidal vasculopathy[J]. Br J Ophthamol, 2016,100(11): 1489-1493. DOI: 10.1136/bjophthalmol-2015-307892.
19. Augstburger E, Zéboulon P, Keilani C, et al. Retinal and choroidal microvasculature in nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 870-877. DOI: 10.1167/iovs.17-22996.
20. Blut M, Kurtulus F, Gozkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia[J]. Br J Ophthalmol, 2018, 102(2): 233-237. DOI: 10.1136/bjophthalmol-2017-310476.
21. Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers in macular telangiectasis type 2 imaged by optical coherence tomography[J]. JAMA Ophthalmol, 2015,133(1): 66-73. DOI:10.1001/jamaophthalmol.2014.3950.
22. Spaide RF, Fujimoto JG, Waheed NK. Image atridacts in optical coherence tomography[J]. Retina, 2015,35(11): 2332-2338. DOI:10.1097/IAE.0000000000000765.
23. Jia Y, Bailey S, Hwang T, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proc Natl Acad Sci, 2015, 112(18): 2395-2402. DOI: 10.1073/pnas.1500185112.
24. Bressler NM, Bressler SB. Neovascular (exudative or " Wet”) age-related macular degeneration[M]. Amsterdam:Elsevier Inc, 2013: 1183-1212.
25. Aslam TM, Zaki HR, Mahmood S, et al. Use of a neural net to model the impact of optical coherence tomography abnormalities on vision in age-related macular degeneration[J]. Am J Ophthalmol, 2018, 185: 94-100. DOI: 10.1016/j.ajo.2017.10.015.