中华眼底病杂志

中华眼底病杂志

糖尿病患者黄斑区视网膜毛细血管形态的光相干断层扫描血管成像观察

查看全文

目的观察糖尿病患者黄斑区视网膜毛细血管形态。方法前瞻性临床研究。糖尿病患者61例104只眼(糖尿病组)和正常健康人31名41只眼(正常对照组)纳入研究。根据糖尿病视网膜病变(DR)程度将糖尿病组患者分为无DR(NDR)组、非增生型DR(NPDR)组、增生型DR(PDR)组,分别为13例23只眼、21例34只眼、27例47只眼。根据是否合并黄斑水肿(DME),再分为DME组、非DME组,分别为20例28只眼、41例76只眼。正常对照组、NDR组、NPDR组、PDR组受检者之间年龄(F=2.045)、性别构成(χ2=2.589)比较,差异均无统计学意义(P=0.908、0.374)。采用光相干断层扫描血管成像对黄斑区3 mm×3 mm范围进行扫描,观察各组受检眼视网膜浅层毛细血管层(SCL)、深层毛细血管层(DCL)的血管形态改变以及黄斑中心凹无血管区面积(FAZ)。不同组别间数据差异比较行χ2检验和t检验。结果正常对照组受检眼未见黄斑区视网膜毛细血管异常表现。NDR组可见为动脉瘤、FAZ完整性破坏,NPDR和PDR组可见微动脉瘤、FAZ完整性破坏、血管纡曲弯折、毛细血管无灌注区以及静脉串珠样血管异常。DCL微动脉瘤明显多于SCL,差异有统计学意义(t=4.759,P=0.000)。NDR组、NPDR组、PDR组之间微动脉瘤眼数比较,差异有统计学意义(χ2=44.071,P=0.000);FAZ完整性破坏眼数比较,差异有统计学意义(χ2=30.759,P=0.000)。NPDR组、PDR组患眼血管纡曲弯折[比值比(OR)=0.213,95%可信区间(CI)0.070~0.648]、毛细血管无灌注区(OR=0.073,95%CI 0.022~0.251)眼数比较,差异均有统计学意义(P=0.004、0.000);静脉串珠样改变眼数比较,差异无统计学意义(OR=0.415,95%CI 0.143~1.208,P=0.102)。NDR组患眼血流密度较正常对照组降低,但差异无统计学意义(t=1.404,P=0.166);其余两组患眼之间血流密度比较,差异均有统计学意义(正常对照组与NPDR:t=5.300,P=0.000;正常对照组与PDR组:t=11.329,P=0.000;NDR与NPDR:t=3.294,P=0.002;NDR与PDR:t=7.795,P=0.000;NPD与PDR组:t=4.214,P=0.000)。DME组患眼FAZ完整性受损(OR=7.719,95%CI 1.645~36.228)、毛细血管无灌注区(OR=14.560,95%CI3.134~67.646)百分率高于非DME组,差异有统计学意义(P=0.004、0.000)。结论OCTA能清楚地检测到糖尿病患者黄斑区视网膜浅层和深层毛细血管的异常改变;可清晰显示糖尿病无视网膜病变者黄斑区毛细血管形态改变。

ObjectiveTo observe the macular capillary morphology in diabetic patients.MethodsA total of 61 patients (104 eyes) with diabetes mellitus (DM group) and 31 healthy controls (41 eyes) were enrolled in the study. According to the degree of diabetic retinopathy (DR), the DM group was divided into non-DR (NDR) group, non-proliferative DR (NPDR) group, and proliferative DR (PDR) group. There were 13 patients (23 eyes), 21 patients (34 eyes) and 27 patients (47 eyes) in each group, respectively. According to whether there was diabetic macular edema (DME), the DM patients were divided into DME group and non-DME group, each had 20 patients (28 eyes) and 41 patients (76 eyes), respectively. The age (F=2.045) and sex (χ2=2.589) between the control group, the NDR group, the NPDR group and PDR group were not statistically significant (P=0.908, 0.374). The 3 mm × 3 mm region in macula was scanned by optical coherence tomography angiography (OCTA), and the retinal capillary morphological changes of superficial capillary layer (SCL) and deep capillary layer (DCL) were observed. Chi-square test and t test were used to compare data among different groups.ResultsThere was no abnormal change of retinal capillary morphology in control group. Microaneurysms and foveal avascular zone (FAZ) integrity erosion can be found in NDR group. There were microaneurysms, FAZ integrity erosion, vascular tortuosity bending, capillary non-perfusion and venous beading in NPDR and PDR groups. The microaneurysms of DCL were significantly more than that of the SCL (t=4.759, P<0.001). The eyes with microaneurysms in NDR group, NPDR group, and PDR group showed significant differences (χ2=44.071, P<0.001), and the eyes with FAZ integrity erosion among these three groups also showed significant differences (χ2=30.759, P<0.001). Compared with NPDR group and PDR group, there were significant differences in vascular tortuosity bending and capillary non-perfusion (vascular tortuosity bending: OR=0.213, 95%CI 0.070−0.648, P=0.004; capillary non-perfusion: OR=0.073, 95%CI 0.022−0.251, P<0.001), and there was no significant difference in venous beading (OR=0.415, 95%CI 0.143−1.208, P=0.102). SCL blood flow density in the 4 groups (control, NDR, NPDR and PDR group) was 49.233±1.694, 48.453±2.581, 45.020±4.685 and 40.667±4.516, respectively. While the difference between the control and NDR group was not significant, the differences between other pairs (control vs NPDR/PDR, NDR vs NPDR/PDR, NPDR vs PDR) were significant. The ratio of FAZ integrity erosion and non-perfusion of DME group was significantly higher than those of non-DME group (vascular tortuosity bending: OR=7.719, 95%CI 1.645−36.228, P=0.004; capillary non-perfusion: OR=14.560, 95%CI 3.134−67.646, P<0.001).ConclusionsOCTA can distinctively detect the abnormal retinal capillary changes of SCL and DCL in diabetic patients. Even in DM patients without diabetic retinopathy, OCTA can detect abnormal blood vessels.

关键词: 糖尿病视网膜病变; 局部血流; 体层摄影术, 光学相干; 黄斑中心凹无血管区

Key words: Diabetic retinopathy; Regional blood flow; Tomography, optical coherence; Foveal avascular zone

引用本文: 陈沁, 喻晓兵, 戴虹. 糖尿病患者黄斑区视网膜毛细血管形态的光相干断层扫描血管成像观察. 中华眼底病杂志, 2018, 34(4): 328-332. doi: 10.3760/cma.j.issn.1005-1015.2018.04.004 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wu L, Fernandez-Loaiza P, Sauma J,et al.Classification of diabetic retinopathy and diabetic macular edema[J].World J Diabetes,2013,4(6):290-294. DOI:10.4239/wjd.v4.i6.290.
2. Hendrick AM, Gibson MV, Kulshreshtha A.Diabetic Retinopathy[J].Prim Care,2015,42(3):451-464. DOI:10.1016/j.pop.2015.05.005.
3. Hashmonay R, Parikh S.Re: Korobelnik et al.: Intravitreal aflibercept for diabetic macular edema (Ophthalmology 2014;121:2247-54)[J].Ophthalmology,2015,122(6):37-38. DOI: 10.1016/j.ophtha.2014.09.041.
4. Aiello LM.Perspectives on diabetic retinopathy[J]. Am J Ophthalmol,2003,136(1):122-135.
5. Raul VM, Jeffrey L. Fundus fluorescence angiography and indocyanine green angiography[J]. Ophthalmology, 2014, 121(6):440-447.
6. Ha SO, Kim DY, Song CH, et al. Anaphylaxis caused by intravenous fluorescein: clinical characteristics and review of literature[J].Intern Emerg Med,, 2014, 9(3): 325-30. DOI:10.1016/j.ophtha.2013.09.002.
7. Lira RP, Olivera CL, Maroues MV, et al. Adverse reactions of fluorescein angiography: a prospective study[J].Arq Bras Oftalmol,2007, 70(4): 615-618.
8. Schwartz DM, Fingler J, Kim DY,et al.Phase-variance optical coherence tomography: a technique for noninvasive angiography[J].Ophthalmology,2014,121(1):180-187. DOI:10.1016/j.ophtha.2013.09.002.
9. Choi W, Mohler KJ, Potsaid B, et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography[J/OL]. PLoS One, 2013, 8(12): 81499[2013-12-11]. https://doi.org/10.1371/journal.pone.0081499.DOI:10.1371/journal.pone.0081499.
10. Jia Y, Tan O, Tokayer J,et al.Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J].Opt Express,2012,20(4):4710-4725. DOI:10.1364/OE.20.004710.
11. 刘青,艾明.光学相干断层扫描血管成像技术在糖尿病视网膜病变中的应用[J].国际眼科杂志, 2016, 16(4): 678-680.DOI:10.3980/j.issn.1672-5123.2016.4.22.Liu Q, Ai M. Application of optical coherence tomography angiography for diabetic retinopathy[J].Int Eye Sci,2016, 16(4): 678-680.DOI:10.3980/j.issn.1672-5123.2016.4.22.
12. Ishibazawa A, Nagaoka T, Takahashi A,et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol,2015, 160(1): 35-44. DOI: 10.1016/j.ajo.2015.04.021.
13. Bandello F, Corbelli E, Carnevali A,et al.Optical coherence tomography angiography of diabetic retinopathy[J].Dev Ophthalmol,2016,56:107-112. DOI: 10.1159/000442801.
14. 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017版)[J].中华糖尿病杂志, 2018, 10(1):4-50. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.Chinese Diabetes Society,Chinese Medical Association. Guidelines for the prevention and treatment of type 2 diabetes in China (2017)[J].Chin J Diabetes Mellitus,2018, 10(1):4-50.DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.
15. Lee B, Novais EA, Waheed NK,et al.En face doppler optical coherence tomography measurement of total retinal blood flow in diabetic retinopathy and diabetic macular edema[J].JAMA Ophthalmol, 2017,135(3):244-251. DOI:10.1001/jamaophthalmol.2016.5774.
16. Couturier A, Mane V, Bonnin S.et al.Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography[J]. Retina, 2015,35(11):2384-2391. DOI: 10.1097/IAE.0000000000000859.
17. de Carlo TE,Chin AT, Bonini Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370.DOI:10.1097/IAE.0000000000000882.
18. Agemy SA, Scripsema NK, Shah CM, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients[J]. Retina, 2015, 35(11): 2353-2363.DOI: 10.1097/IAE.0000000000000862.
19. Lee J, Rosen R. Optical coherence tomography angiography in diabetes[J].Curr Diab Rep,2016, 16(12):123.DOI: 10.1007/s11892-016-0811-x.
20. Durbin MK, An L, Shemonski ND,et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy[J].JAMA Ophthalmol,2017, 135(4): 370-376. DOI: 10.1001/jamaophthalmol.2017.0080.
21. Witmer MT, Parlitsis G, Patel S,et al.Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®)[J]. Clin Ophthalmol,2013,7:389-394. DOI:10.2147/OPTH.S41731.
22. Jack J,Kanscki BB. Diabetic macular edema[M]//Jack J,Kanscki BB. Clinical ophthalmology: a systematic approach. 7 th ed.Edinburgh: Elsevier-Health,2015:550-552.