中华眼底病杂志

中华眼底病杂志

天津医科大学本科学生脉络膜厚度分布及其影响因素

查看全文

目的观察天津医科大学在校本科学生黄斑中心凹脉络膜厚度(ChT)分布情况,并分析其影响因素。方法横断面研究。896名大学生的896只眼纳入研究。其中,男性350名350只眼,女性546名546只眼;均为右眼。平均年龄(19.18±1.36)岁。根据等效球镜度数(SER),将受检眼分为非近视组、低度近视组、中度近视组、高度近视组,分别为59、251、356、230只眼。采用扫频光源光相干断层扫描仪测量黄斑中心凹ChT(SFCT)。根据糖尿病视网膜病变治疗研究组分区将黄斑中心凹6 mm范围内脉络膜划分为以黄斑中心凹为中心的3个同心圆,分别是直径为1 mm的中心区、1~3 mm的内环区、3~6 mm的外环区,共9个区。内环、外环4区分别为上方、下方、鼻侧、颞侧。观察不同区域、性别、屈光度组ChT的分布特点。双变量相关分析ChT与SER、眼轴长度(AL)的相关性。结果896只眼平均SFCT为(221.28±67.35)μm。男性、女性平均SFCT分别为(227.20±69.38)、(217.50±65.80)μm;不同性别者SFCT比较,差异有统计学意义(t=2.075,P=0.038)。与中心区ChT比较,仅外环下方区域ChT差异无统计学意义(t=−0.086,P=0.932),其他区域ChT差异均有统计学意义 (t=−21.973、−5.818、36.328、−3.065、−18.017、−10.595、57.007,P<0.001、<0.001、<0.001、0.002、<0.001、<0.001、<0.001)。水平方向,ChT由鼻侧至颞侧逐渐增厚(F=2 251.558,P<0.001);垂直方向,ChT由上方至中心区逐渐降低;再至下方内环区增厚,至下方外环区再次降低(F=45.425,P<0.05)。相关性分析结果显示,SFCT与AL呈负相关(r=−0.395,P<0.01),与SER呈正相关(r=0.478,P<0.01)。近视度数每增长1 D,SFCT下降约12.29 μm,AL每增长1 mm,SFCT下降约20.14 μm。结论ChT随分布位置不同而变化,水平方向由鼻侧至颞侧逐渐增厚,垂直方向上方较中心处厚,下方内环区较外环区厚;性别、SER、AL均是SFCT的影响因素。

ObjectiveTo explore the distribution of choroidal thickness and its influence factors in university students.MethodsA cross-sectional study. A total of 896 eyes of 896 college students were included in the study. Among them, there were 350 males (350 eyes) and 546 females (546 eyes). All the eyes were right eyes. The average age was 19.18 ± 1.36 years old. According to the spherical equivalent refraction (SER), the eyes were divided into non-myopia group, low myopia group, moderate myopia group and high myopia group, which were 59, 251, 356 and 230 eyes, respectively. The subfoveal ChT (SFCT) was measured using a swept-frequency source optical coherence tomography scanner. According to the ETDRS, the choroid within 6 mm of the fovea was divided into three concentric circles centered on the fovea of the macula, which were the central area with a diameter of 1 mm, the inner ring area of 1-3 mm and the outer ring area of 3-6 mm. The outer ring area of 3-6 mm has a total of 9 zones. The inner ring and outer ring 4 regions were superior, inferior, nasal and temporal, respectively. The distribution characteristics of ChT in different regions, genders and diopter groups were observed. Bivariate correlation analysis were used to analyze the correlation of ChT and SER, axial length (AL).ResultsThe average SFCT of 896 eyes was 221.28±67.35 μm. The mean SFCT of males and females were 227.20±69.38 and 217.50±65.80 μm, respectively. The difference of SFCT between different genders was statistically significant (t=2.075, P=0.038). Compared with the central region ChT, there was no significant difference in ChT between the outer ring and the outer region (t=0.086, P=0.932). The difference of ChT in other regions was statistically significant (t=-21.973, -5.818, 36.328, -3.065, -18.017, -10.595, 57.007; P<0.001, <0.001, <0.001, <0.002, <0.001, <0.001, <0.001). In the horizontal direction, ChT gradually thickens from nasal to temporal (F=2 251.558, P<0.001); in the vertical direction, ChT gradually decreases from superior to the central, but have a little increased from central to inner inferior, then decreased to outer inferior again (F=45.425, P<0.05). Correlation analysis showed that SFCT was negatively correlated with AL (r=0.478, P<0.01) and a negative correlation with axial length (r=−0.395, P<0.01), and positively correlated with SER (r=0.478, P<0.01). SFCT decreased by 12.29 μm for every in myopic refractive error of 1 D, or by 20.14 μm for every increase in AL of 1 mm.ConclusionsChT is changed by different location. The horizontal direction is gradually thickened from nasal to temporal. The vertical direction is thicker than the center. The inferior inner ring area is thicker than the outer ring area. Gender, SER and AL are the influencing factors of SFCT.

关键词: 黄斑/生理学; 脉络膜厚度; 屈光不正; 体层摄影术,光学相干; 影响因素

Key words: Macula/physiology; Choroidal thickness; Refractive error; Optical coherence tomography; Influence factors

引用本文: 金楠, 史雪颖, 张红梅, 刘桂华, 赵璐, 鹿大千, 魏瑞华. 天津医科大学本科学生脉络膜厚度分布及其影响因素. 中华眼底病杂志, 2018, 34(4): 363-367. doi: 10.3760/cma.j.issn.1005-1015.2018.04.011 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Grossniklaus HE, Green WR. Choroidal neovascularization[J]. Am J Ophthalmol, 2004, 137 (3): 496-503. DOI: 10.1016/j.ajo.2003.09.042.
2. Gomi F, Tano Y. Polypoidal choroidal vasculopathy and treatments[J]. Curr Opin Ophthalmol, 2008, 19(3): 208-212. DOI: 10.1097/ICU.0b013e3282fb7c33.
3. Spaide RF, Hall L, Haas A, et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy[J]. Retina, 1996, 16(3): 203-213.
4. Summers JA. The choroid as a sclera growth regulator[J]. Exp Eye Res, 2013, 114(9): 120-127. DOI: 10.1016/j.exer.2013.03.008.
5. Zhang JM, Wu JF, Chen JH, et al. Macular choroidal thickness in children: the Shandong children eye study[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 7646-7652. DOI: 10.1167/iovs.15-17137.
6. Xiong S, He X, Deng J, et al. Choroidal thickness in 3001 chinese children aged 6 to 19 years using swept-source OCT[J/OL]. Sci Rep, 2017,7:45059[2017-03-27]. https://www.nature.com/articles/srep45059.pdf. DOI: 10.1038/srep45059.
7. Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness. the Beijing Eye Study[J]. Ophthalmology, 2013, 120(1): 175-180. DOI: 10.1016/j.ophtha.2012.07.048.
8. 戚沆, 陈长征, 翁铭, 等.成年高度近视患者脉络膜厚度及其相关影响因素分析[J]. 中华实验眼科杂志, 2014, 32(5): 439-442.Qi H, Chen CZ, Weng M, et al. Change of choridal thickness and its influence factors in adult high myopic patients[J]. Chin J Exp Ophthalmol, 2014, 32(5): 439-442. DOI: 10.3760/cma.j.issn.2095-0160.2014.05.012.
9. Sun J, Zhou J, Zhao P, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7504-7509. DOI: 10.1167/iovs.11-8343.
10. Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects[J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9555-9560. DOI: 10.1167/iovs.11-8076.
11. Lee GY, Yu S, Kang HG, et al. Choroidal thickness variation according to refractive error measured by spectral domain-optical coherence tomography in Korean children[J]. Korean J Ophthalmol, 2017, 31(2): 151-158. DOI: 10.3341/kjo.2017.31.2.151.
12. He X, Jin P, Zou H, et al. Choroidal thickness in healthy chinese children aged 6 to 12: the Shanghai children eye study[J]. Retina, 2017, 37(2): 368-375. DOI: 10.1097/IAE.0000000000001168.
13. Ruiz-Moreno JM, Flores-Moreno I, Lugo F, et al. Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 353-359. DOI: 10.1167/iovs.12-10863.
14. Park KA, Oh SY. Choroidal thickness in healthy children[J]. Retina 2013, 33(9): 1971-1976. DOI: 10.1097/IAE.0b013e3182923477.
15. Nagasawa T, Mitamura Y, Katome T, et al. Macular choroidal thickness and volume in healthy pediatric individuals measured by swept-source optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 7068-7074. DOI: 10.1167/iovs.13-12350.
16. Read SA, Collins MJ, Vincent SJ, et al. Choroidal thickness in childhood[J]. Invest Ophthalmol Vis Sci, 2013, 54(5): 3586-3593. DOI: 10.1167/iovs.13-11732.
17. Read SA, Collins MJ, Vincent SJ, et al. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7578-7586. DOI: 10.1167/iovs.13-12772.
18. Ikuno Y, Kawaguchi K, Nouchi T, et al. Choroidal thickness in healthy Japanese subjects[J]. Ophthalmol Vis Sci, 2010, 51(4): 2173-2176. DOI: 10.1167/iovs.09-4383.
19. 曾婧, 丁小燕, 李加青, 等.中国人黄斑区脉络膜厚度值及其影响因素分析[J]. 中华眼底病杂志, 2011, 27(5): 450-453.Zeng J, Ding XY, Li JQ, et al. Choroidal thickness of Chinese population and its relevant factors[J]. Chin J Ocul Fundus Dis, 2011, 27(5): 450-453. DOI: 10.3760/cma.j.issn.1005-1015.2011.05.011.
20. Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8438-8441. DOI: 10.1167/iovs.11-8108.
21. Li XQ, Jeppesen P, Larsen M, et al. Subfoveal choroidal thickness in 1323 children aged 11 to 12 years and association with puberty: the Copenhagen Child Cohort 2000 Eye Study[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 550-555. DOI: 10.1167/iovs.13-13476.
22. Flores-Moreno I, Lugo F, Duker JS, et al. The relationship between axial length and choroidal thickness in eyes with high myopia[J]. Am J Ophthalmol, 2013, 155(2): 314-319. DOI: 10.1016/j.ajo.2012.07.015.