中华眼底病杂志

中华眼底病杂志

糖尿病视网膜病变的蛋白质组学研究进展

查看全文

糖尿病视网膜病变(DR)发病机制复杂,目前尚未完全阐明。蛋白质组学通过定量分析技术对DR患者和糖尿病大鼠的视网膜、玻璃体液、房水、泪液和血液中表达的蛋白和药物干预后差异表达蛋白进行分析,为探索DR发病机制、药物作用机制、诊断和治疗提供新思路。

The pathogenesis of diabetic retinopathy (DR) is complicated and has not yet been fully elucidated. To explore the pathogenesis of DR and the mechanism of drug action, proteomics through quantitative analysis techniques is very useful. It can analyzes differentially expressed proteins in the retina, vitreous fluid, aqueous humor, tears, and blood of DR patients and diabetic rats, and analyzes differentially expressed proteins after drug intervention. This paper is a review of the progress in proteomic research of DR in recent years.

关键词: 糖尿病视网膜病变; 蛋白质组学; 综述

Key words: Diabetic retinopathy; Proteomics; Review

引用本文: 肖静, 张晓敏, 李筱荣. 糖尿病视网膜病变的蛋白质组学研究进展. 中华眼底病杂志, 2018, 34(4): 407-411. doi: 10.3760/cma.j.issn.1005-1015.2018.04.024 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Simo R, Hernandez C.Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence[J]. Prog Retin Eye Res, 2015, 48: 160-180. DOI: 10.1016/j.preteyeres.2015.04.003.
2. Ting DS, Tan KA, Phua V, et al. Biomarkers of diabetic retinopathy[J]. Curr Diab Rep, 2016, 16(12): 125. DOI: 10.1007/s11892-016-0812-9.
3. Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev, 1996, 13: 19-50.
4. 曾嵘, 夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊, 2002, 17(3): 166-169. DOI: 10.3969/j.issn.1000-3045.2002.03.003.Zeng R, Xian QC.The progress and development of proteomic research[J].Bulletin of the Chinese Academy of Sciences, 2002, 17(3): 166-169. DOI: 10.3969/j.issn.1000-3045.2002.03.003.
5. Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature, 2000, 405(6788): 837-846. DOI: 10.1038/35015709.
6. Iwamoto N, Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies[J]. Pharmacol Ther, 2018, 185: 147-154. DOI: 10.1016/j.pharmthera.2017.12.007.
7. Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research[J]. Sci China Life Sci, 2017, 60(10): 1093-1113. DOI: 10.1007/s11427-017-9175-2.
8. Okamoto H, Umeda S, Nozawa T, et al. Comparative proteomic analyses of macular and peripheral retina of cynomolgus monkeys (Macaca fascicularis)[J]. Exp Anim, 2010, 59(2): 171-182.
9. Velez G, Machlab DA, Tang PH, et al. Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic-and oxidative stress-related diseases[J/OL]. PLoS One, 2018, 13(2): 0193250[2018-02-21]. https://doi.org/10.1371/journal.pone.0193250. DOI: 10.1371/journal.pone.0193250.
10. Lu L, Hackett SF, Mincey A, et al. Effects of different types of oxidative stress in RPE cells[J]. J Cell Physiol, 2006, 206(1): 119-125. DOI: 10.1002/jcp.20439.
11. McFadden SL, Ding D, Salvemini D, et al. M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity[J]. Toxicol Appl Pharmacol, 2003, 186(1): 46-54.
12. Coppey LJ, Gellett JS, Davidson EP, et al. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve[J]. Br J Pharmacol, 2001, 134(1): 21-29. DOI: 10.1038/sj.bjp.0704216.
13. Takada M, Ban Y, Yamamoto G, et al. Periostin, discovered by nano-flow liquid chromatography and mass spectrometry, is a novel marker of diabetic retinopathy[J]. Biochem Biophys Res Commun, 2010, 399(2): 221-226. DOI: 10.1016/j.bbrc.2010.07.058.
14. Sundstrom JM, Hernandez C, Weber SR, et al. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2264-2274. DOI: 10.1167/iovs.17-23678.
15. Fort PE, Freeman WM, Losiewicz MK, et al. The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin[J]. Mol Cell Proteomics, 2009, 8(4): 767-779. DOI: 10.1074/mcp.M800326-MCP200.
16. VanGuilder HD, Bixler GV, Kutzler L, et al. Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy[J/OL]. PLoS One, 2011, 6(1): 16271[2011-01-13]. https://doi.org/10.1371/journal.pone.0016271. DOI: 10.1371/journal.pone.0016271.
17. Zhang C, Gehlbach P, Gongora C, et al. A potential role for beta-and gamma-crystallins in the vascular remodeling of the eye[J]. Dev Dyn, 2005, 234(1): 36-47. DOI: 10.1002/dvdy.20494.
18. Hauck SM, Schoeffmann S, Amann B, et al. Retinal Mueller glial cells trigger the hallmark inflammatory process in autoimmune uveitis[J]. J Proteome Res, 2007, 6(6): 2121-2131. DOI: 10.1021/pr060668y.
19. Quin G, Len AC, Billson FA, et al. Proteome map of normal rat retina and comparison with the proteome of diabetic rat retina: new insight in the pathogenesis of diabetic retinopathy[J]. Proteomics, 2007, 7(15): 2636-2650. DOI: 10.1002/pmic.200600486.
20. Takahashi E, Okumura A, Unoki-Kubota H, et al. Differential proteome analysis of serum proteins associated with the development of type 2 diabetes mellitus in the KK-A(y) mouse model using the iTRAQ technique[J]. J Proteomics, 2013, 84: 40-51. DOI: 10.1016/j.jprot.2013.03.014.
21. Abdulaal M, Haddad NM, Sun JK, et al. The role of plasma kallikrein-kinin pathway in the development of diabetic retinopathy: pathophysiology and therapeutic approaches[J]. Semin Ophthalmol, 2016, 31(1-2): 19-24. DOI: 10.3109/08820538.2015.1114829.
22. 刘银萍.糖尿病性视网膜病变患者血清差异蛋白质组学研究[D].广州, 南方医科大学, 2012.Liu YP.Proteomics of serum differences in diabetic retinopathy[D].Guangzhou, Southern Medical University, 2012.
23. Lu CH, Lin ST, Chou HC, et al. Proteomic analysis of retinopathy-related plasma biomarkers in diabetic patients[J]. Arch Biochem Biophys, 2013, 529(2): 146-156. DOI: 10.1016/j.abb.2012.11.004.
24. Gopalakrishnan V, Purushothaman P, Bhaskar A. Proteomic analysis of plasma proteins in diabetic retinopathy patients by two dimensional electrophoresis and MALDI-Tof-MS[J]. J Diabetes Complications, 2015, 29(7): 928-936. DOI: 10.1016/j.jdiacomp.2015.05.021.
25. Jin J, Min H, Kim SJ, et al. Development of diagnostic biomarkers for detecting diabetic retinopathy at early stages using quantitative proteomics[J/OL]. J Diabetes Res, 2016, 2016: 6571976[2015-11-09]. http://dx.doi.org/10.1155/2016/6571976.DOI: 10.1155/2016/6571976.
26. Li K, Chen Z, Duan F, et al. Quantification of tear proteins by SDS-PAGE with an internal standard protein: a new method with special reference to small volume tears[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(6): 853-862. DOI: 10.1007/s00417-009-1275-3.
27. Herber S, Grus FH, Sabuncuo P, et al. Two-dimensional analysis of tear protein patterns of diabetic patients[J]. Electrophoresis, 2001, 22(9): 1838-1844. DOI: 10.1002/1522-2683(200105)22: 9<1838::AID-ELPS1838>3.0.CO;2-7.
28. Zhou L, Zhao SZ, Koh SK, et al. In-depth analysis of the human tear proteome[J]. J Proteomics, 2012, 75(13): 3877-3885. DOI: 10.1016/j.jprot.2012.04.053.
29. Kim HJ, Kim PK, Yoo HS, et al. Comparison of tear proteins between healthy and early diabetic retinopathy patients[J]. Clin Biochem, 2012, 45(1-2): 60-67. DOI: 10.1016/j.clinbiochem.2011.10.006.
30. Csosz E, Boross P, Csutak A, et al. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy[J]. J Proteomics, 2012, 75(7): 2196-2204. DOI: 10.1016/j.jprot.2012.01.019.
31. Costagliola C, Romano V, De Tollis M, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy[J/OL]. Mediators Inflamm, 2013, 2013: 629529 [2013-10-23]. http://dx.doi.org/10.1155/2013/629529.DOI: 10.1155/2013/629529.
32. Torok Z, Peto T, Csosz E, et al. Combined methods for diabetic retinopathy screening, using retina photographs and tear fluid proteomics biomarkers[J/OL]. J Diabetes Res, 2015, 2015: 623619[2015-06-29]. http://dx.doi.org/10.1155/2015/623619.DOI: 10.1155/2015/623619.
33. Marmor MF. Mechanisms of fluid accumulation in retinal edema[J]. Doc Ophthalmol, 1999, 97(3-4): 239-249.
34. Hernandez C, Garcia-Ramirez M, Colome N, et al. Identification of new pathogenic candidates for diabetic macular edema using fluorescence-based difference gel electrophoresis analysis[J]. Diabetes Metab Res Rev, 2013, 29(6): 499-506. DOI: 10.1002/dmrr.2419.
35. Ouchi M, West K, Crabb JW, et al. Proteomic analysis of vitreous from diabetic macular edema[J]. Exp Eye Res, 2005, 81(2): 176-182. DOI: 10.1016/j.exer.2005.01.020.
36. Vujosevic S, Micera A, Bini S, et al. Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients[J]. Acta Ophthalmol, 2016, 94(1): 56-64. DOI: 10.1111/aos.12812.
37. Chiang SY, Tsai ML, Wang CY, et al. Proteomic analysis and identification of aqueous humor proteins with a pathophysiological role in diabetic retinopathy[J]. J Proteomics, 2012, 75(10): 2950-2959. DOI: 10.1016/j.jprot.2011.12.006.
38. Loukovaara S, Nurkkala H, Tamene F, et al. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients[J]. J Proteome Res, 2015, 14(12): 5131-5143. DOI: 10.1021/acs.jproteome.5b00900.
39. Kim K, Kim SJ, Yu HG, et al. Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring[J]. J Proteome Res, 2010, 9(2): 689-699. DOI: 10.1021/pr901013d.
40. Kim K, Kim SJ, Han D, et al. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring[J]. J Proteome Res, 2013, 12(3): 1078-1089. DOI: 10.1021/pr3012073.
41. Zou C, Han C, Zhao M, et al. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis[J]. Clin Proteomics, 2018, 15: 12. DOI: 10.1186/s12014-018-9187-z.
42. Jo DH, Bae J, Chae S, et al. Quantitative proteomics reveals beta2 integrin-mediated cytoskeletal rearrangement in vascular endothelial growth factor (VEGF)-induced retinal vascular hyperpermeability[J].Mol Cell Proteomics, 2016, 15(5): 1681-1691. DOI: 10.1074/mcp.M115.053249.
43. Gao BB, Clermont A, Rook S, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation.[J]. Nat Med, 2007, 13 (2): 181-188. DOI: 10.1038/nm1534.
44. Gao BB, Phipps JA, Bursell D, et al. Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes[J]. J Proteome Res, 2009, 8(12): 5541-5549. DOI: 10.1021/pr9006415.
45. Chaturvedi N, Porta M, Klein R, et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials[J]. Lancet, 2008, 372(9647): 1394-1402. DOI: 10.1016/S0140-6736(08)61412-9.
46. Sjolie AK, Klein R, Porta M, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial[J]. Lancet, 2008, 372(9647): 1385-1393. DOI: 10.1016/S0140-6736(08)61411-7.