中华眼底病杂志

中华眼底病杂志

不同类型的干细胞在糖尿病视网膜病变中的作用研究进展

查看全文

目前关于糖尿病视网膜病变(DR)发病机制有多种观点,主要包括高糖所致视网膜微环境改变、糖基化终末产物形成、氧化应激损伤、炎症反应、促血管新生因子产生等。这些机制产生的共同通路是导致视网膜出现神经退行性病变及微血管损伤。近年来,细胞再生疗法在疾病的修复作用过程中起到越来越重要的作用。不同种类的干细胞对于视网膜均有神经及血管保护作用,但是作用的靶点侧重点不同。干细胞既可以通过旁分泌产生营养因子起到调节视网膜微环境及保护视网膜神经细胞的作用,又可以通过潜在的免疫调节来减少免疫损伤,还可以通过再生功能向受损伤的细胞定向分化。结合以上特点,干细胞显示了对DR的修复潜能,这种基于干细胞的再生疗法对于临床的应用提供了前期依据。但是在干细胞移植过程中,关于干细胞的异质性、细胞传送、向受损伤组织有效的归巢及移植仍是细胞疗法的难题。

Diabetic retinopathy is a serious complication of diabetes and is the leading cause of blindness in people with diabetes. At present, there are many views on the pathogenesis of diabetic retinopathy, including the changes of retinal microenvironment caused by high glucose, the formation of advanced glycation end products, oxidative stress injury, inflammatory reaction and angiogenesis factor. These mechanisms produce a common pathway that leads to retinal degeneration and microvascular injury in the retina. In recent years, cell regeneration therapy plays an increasingly important role in the process of repairing diseases. Different types of stem cells have neurological and vascular protection for the retina, but the focus of the target is different. It has been reported that stem cells can regulate the retinal microenvironment and protect the retinal nerve cells by paracrine production, and can also reduce immune damage through potential immunoregulation, and can also differentiate into damaged cells by regenerative function. Combined with the above characteristics, stem cells show the potential for the repair of diabetic retinopathy, this stem cell-based regenerative therapy for clinical application provides a pre-based evident. However, in the process of stem cell transplantation, homogeneity of stem cells, cell delivery, effective homing and transplantation to damaged tissue is still a problem of cell therapy.

关键词: 糖尿病视网膜病变/病因学; 糖尿病视网膜病变/治疗; 间质干细胞; 胚胎干细胞; 综述

Key words: Diabetic retinopathy/etiology; Diabetic retinopathy/therapy; Mesenchymal stem cells; Embryonic stem cells; Review

引用本文: 曹博雯, 孟旭霞. 不同类型的干细胞在糖尿病视网膜病变中的作用研究进展. 中华眼底病杂志, 2018, 34(4): 415-421. doi: 10.3760/cma.j.issn.1005-1015.2018.04.026 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Stitt AW, O'Neill CL, O'Doherty MT, et al. Vascular stem cells and ischaemic retinopathies[J]. Prog Retin Eye Res, 2011, 30(3): 149-166.DOI:10.1016/j.preteyeres.2011.02.001.
2. Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004, 18(10): 1450-1452.DOI:10.1096/fj.03-1476fje.
3. Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina[J]. Am J Pathol, 2001, 158(1): 147-152. DOI:10.1016/s0002-9440(10)63952-1.
4. Damore PA. Mechanisms of retinal and choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 1994, 35(12): 3974-3979.
5. Glaser BM, D'Amore PA, Michels RG, et al. Demonstration of vasoproliferative activity from mammalian retina[J]. J Cell Biol, 1980, 84(2): 298-304.DOI:10.1083/jcb.84.2.298.
6. Grant MB, Caballero S, Brown GAJ, et al. The contribution of adult hematopoietic stem cells to retinal neovascularization[M]// Moldovan NI. Novel angiogenic mechanisms: role of circulating progenitor endothelial cells. Berlin:Springer-Verlag Berlin, 2003: 37-45.
7. Sengupta N, Caballero S, Mames RN, et al. The role of adult bone marrow-derived stem cells in choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2003, 44(11): 4908-4913. DOI:10.1167/iovs.03-0342.
8. Sengupta N, Afzal A, Caballero S, et al. Paracrine modulation of CXCR4 by IGF-1 and VEGF: implications for choroidal neovascularization[J].Invest Ophthalmol Vis Sci, 2010, 51(5):2697-2704. DOI: 10.1167/iovs.09-4137.
9. Valverde AM, Miranda S, Garcia-Ramirez M, et al. Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy[J]. Mol Vis, 2013, 19: 47-53.
10. Zeng HY, Green WR, Tso MOM. Microglial activation in human diabetic retinopathy[J]. Arch Ophthalmol, 2008, 126(2): 227-232. DOI:10.1001/archophthalmol.2007.65.
11. Sasaki M, Ozawa Y, Kurihara T, et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes[J]. Diabetologia, 2010, 53(5): 971-979. DOI:10.1007/s00125-009-1655-6.
12. Brownlee M. The pathobiology of diabetic complications -- a unifying mechanism[J]. Diabetes, 2005, 54(6): 1615-1625. DOI:10.2337/diabetes.54.6.1615.
13. Ali TK, Matragoon S, Pillai BA, et al. Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes[J]. Diabetes, 2008, 57(4): 889-898. DOI: 10.2337/db07-1669.
14. Martin PM, Roon P, Van Ells TK, et al. Death of retinal neurons in streptozotocin-induced diabetic mice[J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3330-3336. DOI:10.1167/iovs.04-0247.
15. Bringmann A, Wiedemann P. Muller glial cells in retinal disease[J]. Ophthalmologica, 2012, 227(1): 1-19.DOI:10.1159/000328979.
16. McVicar CM, Ward M, Colhoun LM, et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice[J]. Diabetologia, 2015, 58(5): 1129-1137.DOI:10.1007/s00125-015-3523-x.
17. Scott IU, Jackson GR, Quillen DA, et al. Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in mild to moderate nonproliferative diabetic retinopathy: a randomized proof-of-concept clinical trial[J]. JAMA Ophthalmol, 2014, 132(9): 1137-1142.DOI:10.1001/jamaophthalmol.2014.1422.
18. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy[J]. J Clin Invest, 1996, 97(12): 2883-2890. DOI:10.1172/jci118746.
19. Von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence[M]//Toussaint O, Osiewacz HD, Lithgow GJ et al. Molecular and cellular gerontology. Hoboken:Wiley-Blackwell, 2000: 99-110.
20. Pfister F, Feng Y, Hagen FV, et al. Pericyte migration -- a novel mechanism of pericyte loss in experimental diabetic retinopathy[J]. Diabetes, 2008, 57(9): 2495-2502. DOI:10.2337/db08-0325.
21. Erickson KK, Sundstrom JM, Antonetti DA. Vascular permeability in ocular disease and the role of tight junctions[J]. Angiogenesis, 2007, 10(2): 103-117. DOI:10.1007/s10456-007-9067-z.
22. Doerfel MJ, Huber O. Modulation of tight junction structure and function by kinases and phosphatases targeting occludin[J/OL]. J Biomed Biotechnol, 2012, 2012:807356[2012-01-23].https://dx.doi.org/10.1155/2012/807356.DOI:10.1155/2012/807356.
23. Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1 -- a potential mechanism for vascular permeability in diabetic retinopathy and tumors[J]. J Biol Chem, 1999, 274(33): 23463-23467.DOI:10.1074/jbc.274.33.23463.
24. Turner RC. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet, 1998, 352(9131):837-853.
25. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent dibetes mellitus[J]. N Engl J Med, 1993, 329(14): 977-986.
26. Volarevic V, Arsenijevic N, Lukic ML, et al. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus[J]. Stem Cells, 2011, 29(1): 5-10. DOI:10.1002/stem.556.
27. Shaw LC, Neu MB, Grant MB. Cell-based therapies for diabetic retinopathy[J]. Current Diabetes Reports, 2011, 11(4): 265-274.DOI:10.1007/s11892-011-0197-8.
28. Rajashekhar G, Ramadan A, Abburi C, et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy[J/OL]. PLoS One, 2014, 9(1):84671[2014-01-09]. http://dx.plos.org/10.1371/journal.pone.0084671. DOI:10.1371/journal.pone.0084671.
29. Abdi R, Fiorina P, Adra CN, et al. Immunomodulation by mesenchymal stem cells -- a potential therapeutic strategy for type 1 diabetes[J]. Diabetes, 2008, 57(7): 1759-1767. DOI:10.2337/db08-0180.
30. Nauta AJ, Fibbe WE. Hnmunomodulatory properties of mesenchymal stromal cells[J]. Blood, 2007, 110(10): 3499-3506. DOI:10.1182/blood-2007-02-069716.
31. Scalinci SZ, Scorolli L, Corradetti G, et al. Potential role of intravitreal human placental stem cell implants in inhibiting progression of diabetic retinopathy in type 2 diabetes: neuroprotective growth factors in the vitreous[J]. Clin Ophthalmol, 2011, 5: 691-696. DOI:10.2147/opth.s21161.
32. Liew A, O'Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia[J]. Stem Cell Res Ther, 2012, 3(4):28.DOI:10.1186/scrt119.
33. Han JW, Choi D, Lee MY, et al. Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves[J]. Cell Transplant, 2016, 25(2): 313-326.DOI:10.3727/096368915x688209.
34. Kicic A, Shen WY, Wilson AS, et al. Differentiation of marrow stromal cells into photoreceptors in the rat eye[J]. J Neurosci, 2003, 23(21): 7742-7749.
35. Tomita M, Adachi Y, Yamada H, et al. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina[J]. Stem Cells, 2002, 20(4): 279-283. DOI:10.1634/stemcells.20-4-279.
36. Gong L, Wu Q, Song B, et al. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats[J]. Clin Exp Ophthalmol, 2008, 36(7): 666-671. DOI:10.1111/j.1442-9071.2008.01857.x.
37. Volarevic V, Al-Qahtani A, Arsenijevic N, et al. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis[J]. Autoimmunity, 2009, 43(4): 255-263.DOI:10.3109/08916930903305641.
38. Fiorina P, Jurewicz M, Augello A, et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes[J]. J Immunol, 2009, 183(2): 993-1004.DOI:10.4049/jimmunol.0900803.
39. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI:10.1016/s0140-6736(12)60028-2.
40. Yoder MC. Human endothelial progenitor cells[J/OL]. Cold Spring Harb Perspect Med, 2012, 2(7):006692[2012-07-07] .http://perspectivesinmedicine.cshlp.org/cgi/pmidlookup?view=long&pmid=22762017. DOI:10.1101/cshperspect.a006692.
41. Urbich C, Dimmeler S. Endothelial progenitor cells -- characterization and role in vascular biology[J]. Circ Res, 2004, 95(4): 343-353.DOI:10.1161/01.res.0000137877.89448.78.
42. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302): 964-967.DOI:10.1126/science.275.5302.964.
43. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors[J]. Blood, 2000, 95(3): 952-958.
44. Yoder MC, Ingram DA. The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process?[J]. Biochim Biophys Acta, 2009, 1796(1): 50-54.DOI:10.1016/j.bbcan.2009.04.002.
45. Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals[J]. Blood, 2007, 109(5): 1801-1809. DOI:10.1182/blood-2006-08-043471.
46. Medina RJ, O'Neill CL, Sweeney M, et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities[J]. BMC Med Genomics, 2010, 3:18.DOI:10.1186/1755-8794-3-18.
47. He T, Lu T, d'Uscio LV, et al. Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells[J]. Circ Res, 2008, 103(1): 80-88. DOI:10.1161/circresaha.108.176057.
48. Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine[J]. Stem Cells, 2011, 29(11): 1650-1655.DOI:10.1002/stem.745.
49. Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders[J]. J Am Coll Cardiol, 2007, 49(7): 741-752.DOI:10.1016/j.jacc.2006.09.050.
50. Mackie AR, Losordo DW. CD34-positive stem cells in the treatment of heart and vascular disease in human beings[J]. Tex Heart Inst J, 2011, 38(5): 474-485.
51. Peters C, Cornish JM, Parikh SH, et al. Stem cell source and outcome after hematopoietic stem cell transplantation (HSCT) in children and adolescents with acute leukemia[J]. Pediatr Clin North Am, 2010, 57(1): 27-46.DOI:10.1016/j.pcl.2010.01.004.
52. Kim H, Kim JJ, Yoon YS. Emerging therapy for diabetic neuropathy: cell therapy targeting vessels and nerves[J]. Endocr Metab Immune Disord Drug Targets, 2012, 12(2): 168-178.
53. Yang Z, von Ballmoos MW, Faessler D, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells[J]. Atherosclerosis, 2010, 211(1): 103-109.DOI:10.1016/j.atherosclerosis.2010.02.022.
54. Peters A, Burridge PW, Pryzhkova MV, et al. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells[J]. Int J Dev Biol, 2010, 54(6-7): 965-990.DOI:10.1387/ijdb.093043ap.
55. Lu SJ, Feng Q, Caballero S, et al. Generation of functional hemangioblasts from human embryonic stem cells[J]. Nature Methods, 2007, 4(6): 501-509.DOI:10.1038/nmeth1041.
56. Jiang SG, Walker L, Afentoulis M, et al. Transplanted human bone marrow contributes to vascular endothelium[J]. Proc Natl Acad Sci USA, 2004, 101(48): 16891-16896. DOI:10.1073/pnas.0404398101.
57. Caballero S, Sengupta N, Afzal A, et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells[J]. Diabetes, 2007, 56(4): 960-967. DOI:10.2337/db06-1254.
58. Park TS, Bhutto I, Zimmerlin L, et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature[J]. Circulation, 2014, 129(3): 359-372.DOI:10.1161/circulationaha.113.003000.
59. Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus role of NAD(P)H oxidase and endothelial nitric oxide synthase[J]. Circulation, 2002, 105(14): 1656-1662.DOI:10.1161/01.cir.0000012748.58444.08.
60. Tan K, Lessieur E, Cutler A, et al. Impaired function of circulating CD34(+) CD45(-) cells in patients with proliferative diabetic retinopathy[J]. Exp Eye Res, 2010, 91(2): 229-237. DOI:10.1016/j.exer.2010.05.012.
61. Rehman J, Traktuev D, Li JL, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J]. Circulation, 2004, 109(10): 1292-1298. DOI:10.1161/01.cir.0000121425.42966.f1.
62. Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks[J]. Circ Res, 2008, 102(1): 77-85. DOI:10.1161/circresaha.107.159475.
63. Mendel TA, Clabough EBD, Kao DS, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy[J/OL]. PLoS One, 2013, 8(5):65691[2013-05-31] . http://dx.plos.org/10.1371/journal.pone.0065691. DOI:10.1371/journal.pone.0065691.
64. Yang Z, Li K, Yan X, et al. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(10): 1415-1422.DOI:10.1007/s00417-010-1384-z.
65. Decembrini S, Koch U, Radtke F, et al. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells[J]. Stem Cell Reports, 2014, 2(6): 853-865.DOI:10.1016/j.stemcr.2014.04.010.
66. Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina[J]. Nat Biotechnol, 2013, 31(8): 741-747.DOI:10.1038/nbt.2643.
67. Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2160-2164.DOI:10.1167/iovs.10-6518.
68. Simo R, Villarroel M, Corraliza L, et al. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier-implications for the pathogenesis of diabetic retinopathy[J/OL]. J Biomed Biotechnol, 2010, 2010:190724[2010-02-17] .https://dx.doi.org/10.1155/2010/190724. DOI:10.1155/2010/190724.
69. Park TS, Huo JS, Peters A, et al. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated ipsc reprogramming of human myeloid progenitors[J/OL]. PLoS One, 2012, 7(8):42838[2012-08-08]. http://dx.plos.org/10.1371/journal.pone.0042838. DOI:10.1371/journal.pone.0042838.
70. Park TS, Zimmerlin L, Zambidis ET. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013, 83(1): 114-126. DOI:10.1002/cyto.a.22090.