中华眼底病杂志

中华眼底病杂志

组织型纤溶酶原激活剂、雷珠单抗联合C3F8治疗息肉样脉络膜血管病变并发早期黄斑下出血的疗效观察

查看全文

目的观察玻璃体腔注射组织型纤溶酶原激活剂(t-PA)、雷珠单抗和C3F8治疗息肉样脉络膜血管病变(PCV)并发早期黄斑下出血(SMH)的临床效果。方法临床确诊为PCV并发早期SMH的20例患者20只眼纳入研究。患眼出血持续时间7~28 d,平均出血持续时间(14.8±5.6)d。所有患眼均采用Snellen视力表测定最佳矫正视力(BCVA),并将其转换为最小分辨角对数(logMAR)视力记录;采用频域光相干断层扫描(SD-OCT)测量中央视网膜厚度(CRT)及中央视网膜色素上皮脱离(PED)厚度。患眼平均logMAR BCVA为1.73±0.91;平均CRT为(620.0±275.7)μm;平均中央PED厚度为(720.3±261.9)μm。所有患眼接受玻璃体腔注射t-PA、雷珠单抗和C3F8治疗。玻璃体腔注射雷珠单抗采用连续3个月每个月注射一次,后续按需治疗的方案。治疗后平均随访时间为(9.9±3.6)个月。将SMH清除情况分为完全清除、部分清除、无位移三种。观察治疗后6个月时患眼BCVA、CRT、中央PED厚度的变化及SMH清除情况。结果治疗后6个月,患眼平均logMAR BCVA、CRT及中央PED厚度分别为0.42±0.37、(290.2±97.4)μm、(41.6±78.1)μm。与治疗前比较,治疗后6个月患眼BCVA明显提高(F=38.14,P=0.000),CRT及中央PED厚度明显降低(F=7.48、75.94,P=0.000、0.000),差异均有统计学意义。20只眼中,SMH完全清除16只眼,占80%;部分清除4只眼,占20%。所有患者随访期间均未见SMH复发及全身、局部并发症发生。结论玻璃体腔注射t-PA、雷珠单抗、C3F8治疗PCV并发早期SMH可有效清除SMH,提高视力,降低CRT及中央PED厚度。

ObjectiveTo observe the clinical effect of intravitreal injection of tissue plasminogen activator (t-PA), ranibizumab and C3F8 in the treatment of early submacular hemorrhage (SMH) induce to polypoid choroidal vasculopathy (PCV).MethodsThe clinical data of 20 eyes of 20 patients with early SMH induce to PCV were enrolled in this study. The duration of bleeding in the eye was 7 to 28 days, and the mean duration of bleeding was 14.8±5.6 days. All eyes are measured using the Snellen chart best corrected visual acuity (BCVA), logarithm of the minimum angle of resolution (logMAR) was used to calculate visual acuity. Measure central retinal thickness (CRT) and central retinal pigment epithelial detachment (PED) thickness using frequency-domain optical coherence tomography. The average logMAR BCVA of eyes was 1.73±0.91; the mean CRT was 620.0±275.8 μm; the average central PED thickness was 720.3±261.9 μm. All eyes receive intravitreal injection of t-PA, ranibizumab and C3F8. The intravitreal injection of ranibizumab was administered once a month for 3 consecutive months, followed by an on-demand treatment plan. Mean follow-up time was 9.9±3.6 months. The changes in BCVA, CRT, central PED thickness and clearance degree of SMH at 6 months after treatment were observed.ResultsOn the 6 months after treatment, the average logMAR BCVA, CRT and central PED thickness of the eyes were respectively 0.42±0.37, 290.2±97.4 μm and 41.6±78.1 μm. Compared with baseline, the after treatment BCVA was significantly increased (F=38.14, P=0.000), but the CRT and central PED were significantly decreased (F=7.48, 75.94; P=0.000, 0.000). Among the 20 eyes, 16 eyes of SMH was completely cleared, accounting for 80%;4 eyes was partially cleared, accounting for 20%. No recurrence and systemic or local complications occurred during follow-up of all eyes.ConclusionIntravitreal injection of t-PA, ranibizumab, and C3F8 in the treatment of early SMH induce to PCV can effectively remove SMH, improve vision, reduce CRT and central thickness of PED.

关键词: 脉络膜疾病/治疗; 黄斑下出血; 组织型纤溶酶原激活物/治疗应用; 血管生成抑制剂/治疗应用; 惰性气体/治疗应用

Key words: Choroid diseases/therapy; Submacular hemorrhage; Tissue plasminogen activator/therapeutic use; Angiogenesis inhibitors/therapeutic use; Noble gases/therapeutic use

引用本文: 张霜, 张杰, 徐鑫彦, 高荣玉, 吴鹏, 韩海涛, 孙先勇, 黄旭东. 组织型纤溶酶原激活剂、雷珠单抗联合C3F8治疗息肉样脉络膜血管病变并发早期黄斑下出血的疗效观察 . 中华眼底病杂志, 2018, 34(5): 448-452. doi: 10.3760/cma.j.issn.1005-1015.2018.05.007 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Cho JH, Na KR, Cho KH, et al. Incidence rate of massive submacular hemorrhage and its risk factors in polypoidalchoroidal vasculopathy[J]. Am J Ophthalmol, 2016, 169: 79-88. DOI: 10.1016/j.ajo.2016.06.014.
2. Fine HF, Iranmanesh R, Del Priore LV, et al. Surgical outcomes after massive subretinal hemorrhage secondary to age-related macular degeneration[J]. Retina, 2010, 30(10): 1588-1594. DOI: 10.1097/IAE.0b013e3181e2263c.
3. Ahmad S, Bearelly S, Stinnett SS, et al. Photodynamic therapy for predominantly hemorrhagic lesions in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2008, 145(6): 1052-1057. DOI: 10.1016/j.ajo.2008.02.008.
4. Haupert CL, McCuen BW, Jaffe GJ, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration[J]. Am J Ophthalmol, 2001, 131(2): 208-215.
5. Hassan AS, Johnson MW, Schneiderman TE, et al. Management of submacular hemorrhage with intravitreous tissue plasminogen activator injection and pneumatic displacement[J]. Ophthalmology, 1999, 106(10): 1900-1907. DOI: 10.1016/S0161-6420(99)90399-8.
6. Chawla S, Misra V. Pneumatic displacement and intravitreal bevacizumab: a new approach for management of submacular hemorrhage in choroidal neovascular membrane[J]. Indian J Ophthalmol, 2009, 57(2): 155-157.
7. Waizel M, Todorova MG, Rickmann A, et al. Efficacy of vitrectomy combined with subretinal rtpa injection with gas or air tamponade[J]. Klin Monbl Augenheilkd, 2017, 234(4): 487-492. DOI: 10.1055/s-0042-121575.
8. Cheung CM, Bhargava M, Xiang L, et al. Six-month visual prognosis in eyes with submacular hemorrhage secondary to age-related macular degeneration or polypoidal choroidal vasculopathy[J]. Graefe’s Arch Clin Exp Ophthalmol, 2013, 251(1): 19-25. DOI: 10.1007/s00417-012-2029-1.
9. Yuzawa M, Mori R. The origins of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol 2005, 89(5): 602-607. DOI: 10.1136/bjo.2004.049296.
10. Koizumi H, Yamagishi T, Yamazaki T. Relationship between clinical characteristics of polypoidal choroidal vasculopathy and choroidal vascular hyperpermeability[J]. Am J Ophthalmol, 2013, 155(2): 305-313. DOI: 10.1016/j.ajo.2012.07.018.
11. Yang LH, Jonas JB. Optical coherence tomographic enhanced depth imaging of polypoidal choroidal vasculopathy[J]. Retina, 2013, 33(8): 1584-1589. DOI: 10.1097/IAE.0b013e318285cbb3.
12. De Salvo G, Vaz-Pereira S, Keane PA, et al. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy[J]. Am J Ophthalmol, 2014, 158(6): 1228-1238. DOI: 10.1016/j.ajo.2014.08.025.
13. Kawamura A, Yuzawa M, Mori R, et al. Indocyanine green angiographic and optical coherence tomographic findings support classification of polypoidal choroidal vasculopathy into two types[J]. Acta Ophthalmol, 2013, 91(6): 474-481. DOI: 10.1111/aos.12110.
14. Sacu S, Stifter E, Vécsei-Marlovits PV, et al. Management of extensive subfoveal haemorrhage secondary to neovascular age-related macular degeneration[J]. Eye (Lond), 2009, 23(6): 1404-1410. DOI: 10.1038/eye.2008.267.
15. Zhao PQ, Wang WJ, Song HY, et al. The application of t-PA in ophthalmology[J]. Foreign Journal of Medical Ophthalmology, 1993, 17(2): 65-71.
16. Mayer WJ, Hakim I, Haritoglou C, et al. Efficacy and safety of recombinant tissue plasminogen activator and gas versus bevacizumab and gas for subretinal haemorrhage[J]. Acta Ophthalmol, 2013, 91(3): 274-278. DOI: 10.1111/j.1755-3768.2011.02264.x.
17. Guthoff R, Guthoff T, Meigen T. Intravitreous injection of bevacizumab, tissue plasminogen activator, and gas in the treatment of submacular hemorrhage in age-related macular degeneration[J]. Retina, 2011, 31(1): 36-40. DOI: 10.1097/IAE.0b013e3181e37884.
18. Kitagawa Y, Shimada H, Mori R, et al. Intravitreal tissue plasminogen activator, ranibizumab, and gas injection for submacular hemorrhage in polypoidal choroidal vasculopathy[J]. Ophthalmology, 2016, 123(6): 1278-1286. DOI: 10.1016/j.ophtha.2016.01.035.
19. Scupola A, Coscas G, Soubrane G. Natural history of macular subretinal hemorrhage in age-related macular degeneration[J]. Ophthalmologica, 1999, 213(2): 97-102. DOI: 10.1159/000027400.
20. Treumer F, Roider J. Long-term outcome of subretinal coapplication of rtPA and bevacizumab followed by repeated intravitreal anti-VEGF injections for neovascular AMD with submacular haemorrhage[J]. Br J Ophthalmol, 2012, 96(5): 708-713. DOI: 10.1136/bjophthalmol-2011-300655.
21. Hattenbach LO, Klais C, Koch FH. Intravitreous injection of tissue plasminogen activator and gas in the treatment of submacular hemorrhage under various conditions[J]. Ophthalmology, 2001, 108(8): 1485-1492.
22. Schulze SD. Tissue plasminogen activator plus gas injection in patients with subretinal hemorrhage caused by age-related macular degeneration: predictive variables for visual outcome[J]. Graefe’s Arch Clin Exp Ophthalmol, 2002, 240(9): 717-720. DOI: 10.1007/s00417-002-0516-5.
23. Lewis H, Resnick SC, Flannery JG. Tissue plasminogen activator treatment of experimental subretinal hemorrhage[J]. Am J Ophthalmol, 1991, 111(2): 197-204.
24. Toth CA, Morse LS, Hjelmeland LM. Fibrin directs early retinal damage after experimental subretinal hemorrhage[J]. Arch Ophthalmol, 1991, 109(5): 723-729.
25. Benner JD, Hay A, Landers MB, et al. Fibrinolytic-assisted removal of experimental subretinal hemorrhage within seven days reduces outer retinal degeneration[J]. Ophthalmology, 1994, 101(4): 672-681.
26. Sternberg P, Aguilar HE, Drews C. The effect of tissue plasminogen activator on retinal bleeding[J]. Arch Ophthalmol, 1990, 108(5): 720-722.
27. Hawkins BS, Bressler NM, Miskala PH, et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report No. 11[J]. Ophthalmology, 2004, 111(11): 1967-1980. DOI: 10.1016/j.ophtha.2004.07.021.