中华眼底病杂志

中华眼底病杂志

人脐带间充质干细胞源性微囊泡对高糖诱导下大鼠视网膜神经节细胞损伤的保护作用及机制

查看全文

目的观察探讨人脐带间充质干细胞源性微囊泡(hUMSC-MV)对高糖诱导下大鼠视网膜神经节细胞(RGC)损伤的保护作用及机制。 方法体外培养Sprague-Dawley大鼠RGC;超速离心法分离提取并鉴定hUMSC-MV;观察hUMSC-MV与RGC的内化作用。实验分为正常RGC对照组(A组)、高糖对照组(B组)、正常共培养组(C组)、高糖共培养组(D组)进行。A组细胞正常培养,B组细胞为33 mmol/L葡萄糖培养,C组细胞为hUMSC-MV培养,D组细胞为33 mmol/L葡萄糖、hUMSC-MV共培养。采用细胞计数CCK-8试剂盒测定各组RGC活性;采用膜联蛋白(Annexin)Ⅴ/碘化丙啶(PI)测量各组RGC凋亡率。采用实时荧光定量聚合酶链反应(RT-PCR)及蛋白免疫印迹法(Western blot)检测各组RGC内B-细胞淋巴瘤/白血病-2(Bcl-2)、Bax、半胱天冬蛋白酶(Caspase)-3 mRNA和蛋白的相对表达量。多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。 结果超速离心法提取的hUMSC-MV形态为单个或成簇的圆形膜性囊泡样结构,直径约为100~1000 nm。hUMSC-MV表面高表达CD44、CD29、CD73、CD105,阴性表达CD49f、第二型人类白血球抗原、CD34、CD45。大鼠RGC与hUMSCs-MV良好内化。CCK-8及Annexin Ⅴ/PI双染法检测结果显示,B组细胞活性低于A、C、D组(F=107.92,P=0.000),B组细胞凋亡率高于A、C、D组,差异均有统计学意义(F=382.11,P=0.000)。RT-PCR及Western blot检测结果显示,B、D组RGC内Bcl-2、Bax、Caspase-3 mRNA表达(F=219.79、339.198、1 071.21,P=0.000、0.000、0.000)以及Bcl-2、Bax、裂解的Caspase-3、Caspase-3蛋白表达(F=544.28、295.79、533.18、224.75,P=0.000、0.000、0.000、0.000)均高于A、C组,差异有统计学意义。进一步两两比较,D组RGC内Bcl-2 mRNA和蛋白表达高于B组,差异有统计学意义(P<0.05);B组Bax、Caspase-3 mRNA和蛋白表达以及裂解的Caspase-3蛋白表达均高于D组,差异有统计学意义(P<0.05)。 结论hUMSC-MV可通过降低高糖诱导下大鼠RGC内Bax、Caspase-3的表达及活化,增加Bcl-2表达发挥对RGC损伤的保护作用。

ObjectiveTo observe the effect and mechanism of human umbilical cord blood mesenchymal stem cells-derived microvesicles (hUMSCs-MVs) on the injury of the primary rat retinal ganglion cells (RGCs) by high glucose environment. Methods The primary RGCs of Sprague Dawley rats were cultured in vitro, hUMSCs-MVs were isolated and extracted by ultra-centrifugation. hUMSCs-MVs were internalized with RGCs. The RGCs were divided into 4 groups under the conditions below: normal control group (group A), high glucose condition group (group B, RGCs+glucose 33 mmol/L), normal RGCs co-cultured with hUMSCs-MVs group (group C, RGCs+hUMSCs-MVs), and RGCs co-cultured with hUMSCs-MVs in high glucose condition group (group D, RGCs+hUMSCs-MVs+glucose 33 mmol/L). The cell activity was detected by CCK-8 test. Annexin Ⅴ/PI staining detected the cell apoptosis rate by flow cytometry. And the relative expression levels of the genes such as Bcl-2, Bax and Caspase-3 were detected by fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Statistical analysis was performed by using One-way analysis of variance and SNK-q test was used for the comparison between groups. Results The hUMSCs-MVs were extracted by ultra-centrifugation, which were characterized as single or cluster of circular membranous vesicle-like structure with diameter ranging from 100 nm to 1000 nm. The flow cytometry analysis showed that hUMSCS-MVs were highly positived by the surface markers of CD44, CD29, CD73, and CD105 whereas been poorly expressed the integrin (CD49f), HLA class Ⅱ, CD34, CD45. There were significant differences in the cell activity and the apoptosis rate among 4 groups, the cell apoptosis rate of group B was higher significantly than that of group A and group D (F=107.92, P=0.000), the cell activity of group B was lower than that of group A and group D (F=382.11, P=0.000). The results of RT-PCR and Western blot showed that the relative mRNA (F=219.79, 339.198, 1 071.21; P=0.000, 0.000, 0.000) and protein (F=544.28, 295.79, 224.75; P=0.000, 0.000, 0.000) expression of Bcl-2, Bax, Caspase-3 and the protein expression of cleaved Capspase-3 (F=533.18, P=0.000) in group B and D were higher significantly than those in group A and C. The relative expression of Bcl-2 mRNA and protein in group B was significantly lower than that of in group D (P<0.05). The relative expression of Bax, Caspase-3 mRNA and protein in group B was higher than that in group D (P<0.05). The relative expression of cleaved Caspase-3 protein in group B was higher significantly than that in group D (P<0.05). Conclusion The hUMSCs-MVs can protect the cultured rat RGCs from the damage of the high glucose condition through increasing the cell activity and reducing the apoptosis rate of RGCs by promoting the Bcl-2 expression, decreasing the expression of Bax and Caspase-3 and inhibiting the Caspase-3 into the activity form of cleaved Caspase-3.

关键词: 间质干细胞; 微囊泡; 视网膜神经节细胞

Key words: Mesenchymal stem cells; Microvesicles; Retinal ganglion cells

引用本文: 梁泽玉, 陈松, 张惟, 何广辉, 王俊华, 高翔, 武斌. 人脐带间充质干细胞源性微囊泡对高糖诱导下大鼠视网膜神经节细胞损伤的保护作用及机制. 中华眼底病杂志, 2018, 34(6): 568-574. doi: 10.3760/cma.j.issn.1005-1015.2018.06.009 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Valverde AM, Miranda S, García-Ramírez M, et al. Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy[J]. Mol Vis, 2013, 19: 47-53.
2. Oshitari T, Yamamoto S, Hata N, et al. Mitochondria-and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy[J]. Br J Ophthalmol, 2008, 92(4): 552-556. DOI: 10.1136/bjo.2007.132308.
3. Khalfaoui T, Basora N, Ouertani-Meddeb A. Apoptotic factors (Bcl-2 and Bax) and diabetic retinopathy in type 2 diabetes[J]. J Mol Histol, 2010, 41(2-3): 143-152. DOI: 10.1007/s10735-010-9271-9.
4. Hsieh JY, Wang HW, Chang SJ, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis[J/OL]. PLoS One, 2013, 8(8): 72604[2013-08-22]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072604. DOI: 10.1371/journal.pone.0072604.
5. Kusuma GD, Carthew J, Lim R, et al. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect[J]. Stem Cells Dev, 2017, 26(9): 617-631. DOI: 10.1089/scd.2016.0349.
6. Lamichhane TN, Sokic S, Schardt JS, et al. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine[J]. Tissue Eng Part B Rev, 2015, 21(1): 45-54. DOI: 10.1089/ten.TEB.2014.0300.
7. Mead B, Logan A, Berry M. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells[J/OL]. PLoS One, 2014, 9(10): 109305[2014-10-07].http://dx.plos.org/10.1371/journal.pone.0109305. DOI: 0.1371/journal.pone.0109305.
8. Xia J, Luo M, Ni N, et al. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells[J/OL]. PLoS One, 2013, 8(9): 76157[2013-09-30]. http://dx.plos.org/10.1371/journal.pone.0076157. DOI: 10.1371/journal.pone.0076157. eCollection 2013.
9. 董蒙, 张惟, 陈松, 等. 玻璃体腔移植人脐带间充质干细胞诱导的神经干细胞对糖尿病大鼠血-视网膜屏障的保护作用[J].中华眼科杂志, 2017, 53(1): 53-58.DOI: 10.3760/cma.j.issn.0412-4081.2017.01.011.Dong M, Zhang W, Chen S, et al. The protective effect of human umbilical cord mesenchymal stem cells-induced neural stem cells in the vitreous on the blood-retinal barrier in diabetic rats[J]. Chin J Ophthalmol, 2017, 53(1): 53-58.DOI: 10.3760/cma.j.issn.0412-4081.2017.01.011.
10. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.DOI: 10.1083/jcb.201211138.
11. Raisi A, Azizi S, Delirezh N, et al. The mesenchymal stem cell-derived microvesicles enhance sciatic nerve regeneration in rat: a novel approach in peripheral nerve cell therapy[J]. J Trauma Acute Care Surg, 2014, 76(4): 991-997. DOI: 10.1097/TA.0000000000000186.
12. Lin SS, Zhu B, Guo ZK, et al. Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway[J]. Neurochem Res, 2014, 39(5): 922-931. DOI: 10.1007/s11064-014-1288-0.
13. Farinazzo A, Turano E, Marconi S, et al.Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches[J].Cytotherapy, 2015, 17(5): 571-578. DOI: 10.1016/j.jcyt.2015.01.005.
14. Tsutsumi T, Iwao K, Hayashi H, et al. Potential neuroprotective effects of an LSD1 inhibitor in retinal ganglion cells via p38 MAPK activity[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6461-6473. DOI: 10.1167/iovs.16-19494.
15. Greening DW, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods[J]. Methods Mol Biol, 2015, 1295: 179-209. DOI: 10.1007/978-1-4939-2550-6_15.
16. Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes[J]. Annu Rev Biophys, 2010, 39: 407-427. DOI: 10.1146/annurev.biophys.093008.131234.
17. Hugel B, Martínez MC, Kunzelmann C, et al.Membrane microparticles: two sides of the coin[J]. Physiology (Bethesda), 2005, 20: 22-27. DOI: 10.1152/physiol.00029.2004.
18. Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles[J]. Curr Biol, 2009, 19(22): 1875-1885. DOI: 10.1016/j.cub.2009.09.059.
19. Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles[J]. Proc Natl Acad Sci USA, 2015, 112(12): 1433-1442. DOI: 10.1073/pnas.1418401112.
20. Santos JM, Bárcia RN, Simões SI, et al.The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX®) in the treatment of inflammatory arthritis[J]. J Transl Med, 2013, 17(11): 18. DOI: 10.1186/1479-5876-11-18.
21. Zhang HC, Liu XB, Huang S, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo[J].Stem Cells Dev, 2012, 21(18): 3289-3297. DOI: 10.1089/scd.2012.0095.
22. Wu S, Ju GQ, Du T, et al. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo[J/OL]. PLoS One, 2013, 8(4): 61366[2013-04-12]. http://dx.plos.org/10.1371/journal.pone.0061366. DOI: 10.1371/journal.pone.0061366.
23. Baulch JE, Acharya MM, Allen BD, et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain[J]. Proc Natl Acad Sci USA, 2016, 113(17): 4836-4841. DOI: 10.1073/pnas.1521668113.