中华眼底病杂志

中华眼底病杂志

家族性渗出性玻璃体视网膜病变的遗传学研究进展

查看全文

家族性渗出性玻璃体视网膜病变(FEVR)是以视网膜血管发育不全为特征的一类遗传性疾病。其遗传异质性较高,包括常染色体显性遗传、常染色体隐性遗传和X染色体连锁隐性遗传等多种遗传方式。目前为止发现有6个基因与其病变相关,分别是Wnt受体卷曲蛋白(FZD4)、Norrie病(NDP)、共受体低密度脂蛋白受体相关蛋白5(LRP5)、四旋蛋白12(TSPAN12)、锌指蛋白408(ZNF408)、驱动蛋白家族成员11(KIF11)基因。其中,FZD4、NDP、LRP5、TSPAN12等4个基因在Norrin/Frizzled4信号通路中发挥重要作用。在视网膜毛细血管内皮细胞中,Norrin通过激活Norrin/Frizzled4信号通路特异性控制眼毛细血管的发生。ZNF408与KIF11是近5年来新发现的与FEVR有关的致病基因,其中ZNF408编码在视网膜血管生成中发挥重要作用的转录因子,KIF11在眼发育和维持视网膜形态、功能方面发挥作用。

Familial exudative vitreoretinopathy (FEVR) is a hereditary disease with high geneticheterogeneity, including autosomal dominant inheritance, autosomal recessive inheritance, snd X-linked recessive inheritance. So far, six genes have been found to be associated with FEVR: Wnt receptor fizzled protein (FZD4), Norrie disease (NDP), co-receptor low-densitylipoprotein receptor-related protein 5 (LRP5), and tetrasin 12 (TSPANI2), zinc finger protein408 (ZNF408), kinesin family member 11 (KIF11) gene. Among them, FZD4, NDP, LRPS, TSPANI2 and other four genes play an important role in the Norrin/Frizzled 4 signaling pathway. In retinal capillary endothelial cells, Norrin specifically controls the occurrence of ocular capillaries by activating the Norrin/Frizzled 4 signaling pathway. ZNF408 and KIF11 are newly discovered pathogenic genes related to FEVR in the past 5 years. ZNF408 encodes the transcription factor that plays an important role in retinal angiogenesis. KIF11 plays a role in eye development and maintenance of retinal morphology and function.

关键词: 视网膜疾病/遗传学; 综述

Key words: Retinal diseases/genetics; Review

引用本文: 熊壮, 梁斗立. 家族性渗出性玻璃体视网膜病变的遗传学研究进展. 中华眼底病杂志, 2018, 34(6): 608-613. doi: 10.3760/cma.j.issn.1005-1015.2018.06.020 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Ranchod TM, Ho LY, Drenser KA, et al.Clinical presentation of familial exudative vitreoretinopathy[J]. Ophthalmology, 2011, 118(10): 2070-2075. DOI: 10.1016/j.ophtha.2011.06.020.
2. Rao FQ, Cai XB, Cheng FF, et al.Mutations in LRP5, FZD4, TSPAN12, NDP, ZNF408, or KIF11 genes account for 38.7% of Chinese patients with familial exudative vitreoretinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2623-2629.DOI:10.1167/iovs.16-21324.
3. Kondo H. Complex genetics of familial exudative vitreoretinopathy and related pediatric retinal detachments[J]. Taiwan J Ophthalmol, 2015, 5(2): 56-62. DOI: 10.1016/j.tjo.2015.04.002.
4. Wang Y, Rattner A, Zhou Y, et al. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity[J]. Cell, 2012, 151(6): 1332-1344. DOI:10.1016/j.cell.2012.10.042.
5. Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease[J]. Trends Mol Med, 2010, 16(9), 417-425. DOI:10.1016/j.molmed.2010.07.003.
6. Panagiotou ES, Sanjurjo Soriano C, Poulter JA, et al. Defects in the cell signaling mediator β-Catenin cause the retinal vascular condition FEVR[J]. Am J Hum Genet, 2017, 100(6): 960-968. DOI: 10.1016/j.ajhg.2017.05.001.
7. Poulter JA, Ali M, Gilmour DF, et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy[J]. Am J Hum Genet, 2010, 86(2): 248-253. DOI:10.1016/j.ajhg.2010.01.012.
8. Salvo J, Lyubasyuk V, Xu M, et al.Next-generation sequencing and novel variant determination in a cohort of 92 familial exudative vitreoretinopathy patients[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 1937-1946. DOI: 10.1167/iovs.14-16065.
9. Seo SH, Yu YS, Park SW, et al. Molecular characterization of FZD4, LRP5, and TSPAN12 in familial exudative vitreoretinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5143-5151. DOI: 10.1167/iovs.14-15680.
10. Nikopoulos K, Gilissen C, Hoischen A, et al. Next-generation sequencing of a 40Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy[J]. Am J Hum Genet, 2010, 86(2): 240-247. DOI:10.1016/j.ajhg.2009.12.016.
11. Pefkianaki M, Hasanreisoglu M, Suchy SF, et al. Familial exudative vitreoretinopathy with a novel LRP5 mutation[J]. J Pediat Ophthalmol Strabismus, 2016, 53: 39-42. DOI:10.3928/01913913-20160719-02.
12. Musada GR, Syed H, Jalali S, et al. Mutation spectrum of the FZd-4, TSPAN12 ANd ZNF408 genes in Indian FEVR patients[J]. BMC Ophthalmol, 2016, 16: 90. DOI: 10.1186/s12886-016-0236-y.
13. Yang H, Li S, Xiao X, et al. Identification of FZd4 and LRP5 mutations in 11 of 49 families with familial exudative vitreoretinopathy[J]. Mol Vis, 2012, 18: 2438-2446.
14. Lin Y, Gao H, Chen C, et al. Clinical and next-eneration sequencing findings in a Chinese family exhibiting severe familialexudative vitreoretinopathy[J], Int Mol Med, 2018, 41(2): 773-782. DOI:10.3892/ijmm.2017.3308.
15. Kirikoshi H, Sagara N, Koike J, et al. Molecular cloning and characterization of human frizzled-4 on chromosome 11q14-q21[J]. Biochem Biophys Res Commun, 1999, 264(3): 955-961. DOI:10.1006/bbrc.1999.1612.
16. Kaykas A, Yang-Snyder J, Heroux M, et al. Mutant frizzled 4 associated with vitreoretinopathy traps wild-type frizzled in the endoplasmic reticulum by oligomerization[J]. Nature Cell Biol, 2004, 6(1): 52-58. DOI: 10.1038/ncb1081.
17. Xu Q, Wang Y, Dabdoub A, et al. Vascular development in the retina and inner ear: control bynorrin and frizzled-4, a high-affinity ligand-receptor pair[J]. Cell, 2004, 116(6): 883-895.
18. Robitaille J, MacDonald ML, Kaykas A, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy[J]. Nature Genet, 2002, 3(2)2: 326-330. DOI: 10.1038/ng957.
19. Jia LY, Li XX, Yu WZ, et al. Novel frizzled-4 gene mutations in Chinese patients with familial exudative vitreoretinopathy[J]. Arch Ophthalmol, 2010, 128 (10):1341-1349. DOI:10.1001/archophthalmol.2010.240.
20. Robitaille JM, Zheng B, Wallace K, et al. The role of Frizzled-4 mutations in familial exudative vitreoretinopathy and Coats disease[J]. Br J Ophthalmol, 2011, 95(4): 574-579. DOi:10.1136/bjo.2010.190116.
21. Qin M, Hayashi H, Oshima K, et al. Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes[J]. Hum Mutat, 2005, 26(2): 104-112.
22. Kondo H, Hayashi H, Oshima K, et al. Hayashi K.Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity[J]. Br J Ophthalmol, 2003, 87(10): 1291-1295.
23. Meindl A, Berger W, Meitinger T, et al. Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domain of mucins[J]. Nat Genet, 1992, 2(2): 139-143.
24. Norrie G. Causes of blindness in children: twenty-five years’experience of Danish Institutes for the blind[J]. Acta Ophthalmol, 1927, 5: 357-386.
25. Warburg M. Norrie’s disease:a congenital progressive oculo-acoustico-cerebral degeneration[J]. Acta Ophthalmol, 1966, 89(Suppl): S1-47.
26. Berger W, Meindl A, van de Pol TJ, et al.Isolation of a candidate gene for Norrie disease by positional cloning[J]. Nat Genet, 1992, 2(1): 84. DOI: 10.1038/ng0992-84.
27. Kivlin JD, Sanborn GE, Wright E, et al. Further linkage data on Norrie disease[J]. Am J Med Genet, 1987, 26(3): 733-736. DOI: 10.1002/ajmg.1320260329.
28. Gal A, Stolzenberger C, Wienker T, et al. Norrie’s disease: close linkage with genetic markers from the proximal short arm of the X chromosome[J]. Clin Genet, 1985, 27(3): 282-283.
29. Bleeker-Wagemakers LM, Friedrich U, Gal A, et al. Close linkage between Norrie disease, a cloned DNA sequence from the proximal short arm, and the centromere of the X chromosome[J]. Hum Genet, 1985, 71(3): 211-214.
30. Fullwood P, Jones J, Bundey S, et al. X linked exudative vitreoretinopathy:clinical features and genetic linkage analysis[J]. Br J Ophthalmol, 1993, 77(3): 168-170.
31. Chen ZY, Battinelli EM, Fielder A, et al. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy[J]. Nat Genet, 1993, 5(2): 180-183.
32. Aponte EP, Pulido JS, Ellison JW, et al. A novel NDP mutation in an infant with unilateral persistent fetal vasculature and retinal vasculopathy[J]. Ophthalmic Genet, 2009, 30(2): 99-102. DOI: 10.1080/13816810802705755.
33. Black GC, Perveen R, Bonshek R, et al. Coats’disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene:a role for norrin in retinal angiogenesis[J]. Hum Mol Genet, 1999, 8(11): 2031-2035.
34. Wu WC, Drenser K, Trese M, et al. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene[J]. Arch Ophthalmol, 2007, 125(2): 225-230.
35. Gilmour DF. Familial exudative vitreoretinopathy and related retinopathies[J]. Eye, 2015, 29: 1-14. DOI:10.1038/eye.2014.70.
36. Toomes C, Bottomley HM, Jackson RM, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q[J]. Am J Hum Genet, 2004, 74(4): 721-730. DOI: 10.1086/383202.
37. Jiao X, Ventruto V, Trese MT, et al. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5[J]. Am J Hum Genet, 2004, 75(5): 878-884. DOI: 10.1086/425080.
38. Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum[J]. Cell, 2008, 135(5): 825-837. DOI:10.1016/j.cell.2008.09.059.
39. Lai MB, Zhang C, Shi J, et al. TSPAN12 is a Norrin co-receptor that amplifies frizzled4 ligand selectivity and signaling[J]. Cell Rep, 2017, 19(13): 2809-2822. DOI:10.1016/j.celrep.2017.06.004.
40. Collin RW, Nikopoulos K, Dona M, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature[J]. Proc Natl Acad Sci USA, 2013, 110(24): 9856-9861. DOI:10.1073/pnas.1220864110.
41. Poulter JA, Davidson AE, Ali M, et al. Recessive mutations in TSPAN12 cause retinal dysplasia and severe familial exudative vitreoretinopathy (FEVR)[J]. Invest Ophthalmol Vis Sci, 2012, 53(6): 2873-2879. DOI:10.1167/iovs.11-8629.
42. Karjosukarso DW, van Gestel SHC, Qu J, et al. An FEVR-associated mutation in ZNF408 alters the expression of genes involved in the development of vasculature[J]. Hum Mol Genet, 2018, 27(20): 3519-3527. DOI: 10.1093/hmg/ddy244.
43. Cui X, De Vivo I, Slany R, et al. Association of SET domain and myotubularin-related proteins modulates growth control[J]. Nat Genet, 1998, 18(4): 331-337.
44. Min J, Zhang X, Cheng X, et al. Structure of the SET domain histone lysine methyltransferase Clr4[J]. Nat Struct Biol, 2002, 9(11): 828-832.
45. 李忆安, 张琦, 赵培泉. 家族性渗出性玻璃体视网膜病变与锌指蛋白408基因的相关性研究[J]. 中华眼底病杂志, 2016: 32(6): 661-663. DOI:10.3760/cma.j.issn.1005-1015.2016.06.028.Li YA, Zhang Q, Zhao PQ.Zinc finger protein 408 in the pathogenesis of familial exudative vitreoretinopathy[J]. Chin J Ocul Fundus Dis.2016, 32: 661-663. DOI:10.3760/cma.j.issn.1005-1015.2016.06.028.
46. Robitaille JM, Gillett RM, LeBlanc MA, et al. Phenotypic overlap between familial exudative vitreoretinopathy and microcephaly, lymphedema, and chorioretinal dysplasia caused by KIF11 mutations[J]. JAMA Ophthalmol, 2014, 132(12): 1393-1399. DOI: 10.1001/jamaophthalmol.2014.2814.
47. Hu H, Xiao X , Li S, et al. KIF11 mutations are common cause of autosomal dominant familial exudativevitreoretinopathy[J]. Br J Ophthalmol, 2016, 100(2): 278-283. DOI:10.1136/bjophthalmol-2015-306878.
48. Li JK, Fei P, Li Y, et al. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis[J/OL].Sci Rep, 2016, 6:26564[2016-05-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876406/.DOI:10.1038/srep26564.
49. El-Nassan HB. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents[J]. Eur J Med Chem, 2013, 62: 614-631. DOI:10.1016/j.ejmech.2013.01.031.
50. Bartoli KM, Jakovljevic J, Woolford JL Jr, et al. Kinesin molecular motor Eg5 functions during polypeptide synthesis[J]. Molec Biol Cell, 2011, 22(18): 3420-3430. DOI:10.1091/mbc.E11-03-0211.
51. Birtel J, Gliem M, Mangold E, et al. Novel insights into the phenotypical spectrum of KIF11-associated retinopathy, including a new form of retinal ciliopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 3950-3959. DOI:10.1167/iovs.17-21679.
52. Boonstra FN, van Nouhuys CE, Schuil J, et al. Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy[J]. Invest Ophthalmol Vis Sci, 2009, 50(9): 4379-4385. DOI:10.1167/iovs.08-3320.
53. Iarossi G, Bertelli M, Maltese PE, et al. Genotype-phenotype characterization of novel variants in six Italian patients with familial exudative vitreoretinopathy[J/OL]. J Ophthalmol, 2017, 2017:3080245[2017-07-05]. https://doi.org/10.1155/2017/>3080245.DOI:10.1155/2017/3080245.
54. Li Y, Peng J, Li J, et al. The characteristics of digenic familial exudative vitreoretinopathy[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2018, 2018:E1[2018-08-01]. https://link.springer.com/article/10.1007%2Fs00417-018-4076-8. DOI:10.1007/s00417-018-4076-8. [pubahead of print].
55. Qin M, Kondo H, Tahira T, et al. Moderate reduction of Norrin signaling activity associated with the causative missense mutations identified in patients with familial exudative vitreoretinopathy[J]. Hum Genet, 2008, 122(6): 615-623.