中华眼底病杂志

中华眼底病杂志

正常人眼黄斑血流密度及结构与年龄的相关性研究

查看全文

目的观察正常人眼黄斑区血流密度变化,初步分析其与年龄的相关性。 方法横断面研究。2017年6月至2018年6月在广东省人民医院眼科门诊行眼底检查的正常健康者250名250只眼纳入研究。其中,男性125名125只眼,女性125名125只眼。平均年龄(44.76±14.77)岁。其中,20~29、30~39、40~49、50~59、≥60岁均为50名50只眼。均行BCVA、裂隙灯显微镜、间接检眼镜、OCT血管成像(OCTA)检查。受检者均双眼进行检查,利用Excel生成随机数选取1只眼的数据纳入分析,其中右眼126只,左眼124只。采用频域OCTA仪对黄斑区6 mm×6 mm范围进行扫描。软件自动将其划分为以黄斑中心凹为中心的3个同心圆,分别是直径为1 mm的中心凹区,1~3 mm的旁中心凹区,3~6 mm的中心凹周围区。测量黄斑区6 mm范围内整体及不同分区浅层毛细血管丛(SVC)、深层毛细血管丛(DVC)血流密度以及中心凹无血管区(FAZ)300 μm宽度内的血流密度(FD-300),FAZ面积、周长(PERIM)、非圆度指数(AI)以及中心凹视网膜厚度(CRT)。黄斑区血流密度、CRT、FAZ与年龄的相关性行Pearson相关性分析。 结果受检眼黄斑区SVC、DVC平均血流密度分别为(51.61±2.54)%、(54.04±5.46)%,平均FD-300为(55.57±4.15)%;平均CRT、PERIM、AI分别为(285.55±12.13)μm、(2.150±0.367)mm、1.10±0.04。相关性分析结果显示,年龄与黄斑区SVC、DVC整体(r=−0.335、−0.279)、旁中心凹区(r=−0.255、−0.368)、中心凹周围区(r=−0.330、−0.269)血流密度以及FD-300(r=−0.311)均呈负相关(P<0.01),与中心凹区血流密度不相关(r=−0.071、−0.118,P=0.264、0.064);与FAZ面积、PERIM、AI均不相关(r=−0.070、−0.055、0.074,P=0.267、0.385、0.142);与平均CRT呈负相关(r=−0.217,P<0.01);与中心凹区CRT无相关(r=0.115,P=0.068)。CRT与中心凹区SVC、DVC血流密度呈正相关(r=0.715、0.653, P<0.01),而与FAZ面积呈负相关(r=−0.669,P<0.01)。 结论正常眼黄斑区毛细血管血流密度随年龄增长而下降。

ObjectiveTo observe the changes of blood flow density in the macular area of normal eyes, and to analyze its correlation with age. MethodsA cross-sectional study. Two hundred and fifty normal healthy subjects (125 males and 125 females, aged 44.76±14.77) in routine ophthalmologic examination at the Department of Ophtalmology of Guangdong Provincial People’s Hospital during June 2017 to June 2018 were enrolled. Among them, 20 to 29, 30 to 39, 40 to 49, 50 to 59, and ≥ 60 years old were 50 subjects (50 eyes) in each. BCVA, slit lamp microscope, indirect ophthalmoscope, OCT angiography (OCTA) examinations were conducted for all eyes. The subjects were examined by both eyes, and the data of 1 eye was selected by EXCEL to generate random numbers, including 126 right eyes and 124 left eyes. The range of 6 mm × 6 mm in the macular area was scanned using a frequency domain OCTA instrument. The software automatically divides it into three concentric circles centered on the macular fovea, which were foveal area with a diameter of 1 mm, parafoveal area of 1 to 3 mm, and foveal peripheral area of 3 to 6 mm. The blood flow density of superficial capillary vessel, deep capillary vessel and foveal avascular area (FAZ) within a 300 μm width (FD-300), FAZ area, perimeter (PERIM), non-circularity index, center retinal thickness (CRT) were measured. The relationship between the blood flow density in macula, CRT, FAZ and age was analyzed by Pearson correlation analysis. ResultsThe mean blood flow density of superficial capillary vessel and deep capillary vessel were (51.61±2.54)% and (54.04±5.46)%, respectively. The average FD-300, CRT, PERIM and non-circularity index were (285.55±12.13) μm, (2.150±0.367) mm, 1.10±0.04, respectively. The relevance of the results showed that the age was negatively correlated with the blood flow density of whole area (r=−0.335, −0.279; P<0.01), parafoveal area (r=−0.255, −0.368; P<0.01), foveal peripheral area (r=−0.330, −0.269; P<0.01) in superficial capillary vessel and deep capillary vessel as well as FD-300 (r=−0.311, P<0.01), but not correlated with the blood flow density of foveal area (r=−0.071, −0.118; P=0.264, 0.064). There was no relationship between the age and the FAZ area, PERIM, non-circularity index (r=−0.070, −0.055, 0.074; P=0.267, 0.385, 0.142). The age was negatively correlated with the average CRT (r=−0.217, P<0.01), but not correlated with the CRT in foveal area (r=0.115, P=0.068). The CRT was positively correlated with the blood flow density of superficial capillary vessel and deep capillary vessel in foveal area (r=0.715, 0.653; P<0.01), but negatively correlated with the FAZ area (r=−0.669, P<0.01). ConclusionThe capillary blood flow density of macular area in the normal eyes decreases with age.

关键词: 局部血流; 体层摄影术,光学相干; 年龄因素

Key words: Regional blood flow; Tomography, optical coherence; Age factors

引用本文: 曾运考, 杨大卫, 曹丹, 胡云燕, 张良. 正常人眼黄斑血流密度及结构与年龄的相关性研究. 中华眼底病杂志, 2019, 35(1): 3-7. doi: 10.3760/cma.j.issn.1005-1015.2019.01.002 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Cao D, Yang D, Huang Z, et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[J]. Acta Diabetologica[J], 2018, 55(5): 469-477. DOI: 10.1007/s00592-018-1115-1.
2. Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. DOI: 10.1016/j.preteyeres.2017.11.003.
3. Cavallotti C, Artico M, Pescosolido N, et al. Age-related changes in the human retina[J]. Can J Ophthalmol, 2004, 39(1): 61-68. DOI: 10.1016/S0008-4182(04)80054-1.
4. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 451-459. DOI: 10.1167/iovs.15-18944.
5. Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography[J]. Sci Rep, 2017, 7: 42201. DOI: 10.1038/srep42201.
6. Yu J, Jiang C, Wang X, et al. Macular perfusion in healthy chinese: an optical coherence tomography angiogram study[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3212-3217. DOI: 10.1167/iovs.14-16270.
7. Samara WA, Say EA, Khoo CT, et al. Correlation of f+ oveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2188-2195. DOI: 10.1097/IAE.0000000000000847.
8. Hoyer S. Brain glucose and energy metabolism during normal aging[J]. Aging (Milano), 1990, 2(3): 245-258.
9. Harwerth RS, Wheat JL. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness[J]. Graefe’s Arch Clin Exp Ophthalmol, 2008, 246(2): 305-314. DOI: 10.1007/s00417-007-0691-5.
10. Wu L, Huang Z, Wu D, et al. , Characteristics of the capillary-free zone in the normal human macula[J]. Jpn J Ophthalmol, 1985, 29(4): 406-411.
11. Iafe NA, Phasukkijwatana N, Chen X, et al. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5780-5787. DOI: 10.1167/iovs.16-20045.
12. Kim K, Kim ES, Yu SY. Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes[J]. Br J Ophthalmol, 2018, 102(9): 1226-1231. DOI: 10.1136/bjophthalmol-2017-311149.
13. Te DC, Chin AT, Ma BF, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370. DOI: 10.1097/IAE.0000000000000882.
14. Lu Y, Simonett JM, Wang J, et al. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2212-2221. DOI: 10.1167/iovs.17-23498.
15. Casselholmde Salles M, Kvanta A, Amrén U, et al. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 242-246. DOI: 10.1167/iovs.15-18819.
16. Joyal JS, Gantner ML, Smith LEH, et al. Retinal energy demands control vascular supply of the retina in development and disease: the role of neuronal lipid and glucose metabolism[J]. Prog Retin Eye Res, 2018, 64: 131-156. DOI: 10.1016/j.preteyeres.2017.11.002.
17. Provis JM, Diaz CM, Dreher B. Ontogeny of the primate fovea : a central issue in retinal development[J]. Prog Neurobiol, 1998, 54(5): 549-580. DOI: 10.1016/S0301-0082(97)00079-8.
18. Tick S, Rossant F, Ghorbel I, et al. Foveal shape and structure in a normal population[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5105-5110. DOI: 10.1167/iovs.10-7005.
19. Mo S, Krawitz B, Efstathiadis E, et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 130-140. DOI: 10.1167/iovs.15-18932.
20. Snodderly DM, Weinhaus RS, Choi JC. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis)[J]. J Neurosci, 1992, 12(4): 1169-1193. DOI: 10.1523/JNEUROSCI.12-04-01169.1992.