中华眼底病杂志

中华眼底病杂志

特发性黄斑前膜患者中心凹无血管区面积与中心凹形态相关性研究

查看全文

目的 观察并探讨特发性黄斑前膜(IMEM)患者中心凹无血管区(FAZ)面积与中心凹形态的相关性。 方法 回顾性系列病例研究。2016年11月至2017年8月于中部战区总医院眼科临床检查确诊为IMEM的54例患者54只眼(IMEM组)及正常人50名50只眼(对照组)纳入研究。采用OCT血管成像仪测量黄斑区视网膜浅层、深层毛细血管层FAZ面积;采用扫频光源OCT测量黄斑中心凹厚度(CMT)、内层视网膜厚度(IRT)、外层视网膜厚度(ORT)、中心凹下脉络膜厚度(SFCT)并观察椭圆体带(EZ)的完整性。对比观察IMEM组、对照组受检者FAZ面积、CMT、IRT、ORT、SFCT及EZ完整性;同时分析IMEM组患眼FAZ面积、CMT、IRT、ORT、CT及EZ完整性之间的相关性。 结果 与对照组受检眼比较,IMEM组患眼视网膜浅层、深层毛细血管层FAZ面积均明显变小,差异有统计学意义(t=−29.095、−28.743,P<0.001、<0.001);CMT、IRT、ORT、SFCT均增厚,差异有统计学意义(Z=−8.784、−8.524、−7.709、−7.535,P<0.001、<0.001、<0.001、<0.001)。相关性分析结果显示,IMEM组患眼视网膜浅层毛细血管层FAZ面积与CMT、IRT、EZ完整性呈负相关(r=−0.464、−0.536、−0.293,P<0.001、<0.001、0.039);与ORT、SFCT无明显相关(r=−0.218、−0.165,P=0.172、0.157)。深层毛细血管层FAZ面积与CMT、IRT、EZ完整性呈负相关(r=−0.306、−0.694、−0.468,P=0.037、<0.001、<0.001);与ORT、SFCT无明显相关(r=−0.242、−0.227,P=0.079、0.094)。 结论 IMEM患眼视网膜浅层、深层毛细血管层FAZ面积较正常眼明显缩小;均与CMT、IRT、EZ完整性呈明显负相关。

Objective To analyze the correlation between foveal avascular zone (FAZ) size and foveal morphology in patients with idiopathic macular epiretinal membrane (IMEM) using OCT angiography (OCTA). Methods A retrospective case series study contained of 54 eyes of 54 patients affected with IMEM (IEM group) and 50 eyes of 50 normal persons as the control group. The BCVA was measured using the international standard visual acuity chart, and the results were converted to the logMAR visual acuity. The FAZ areas were evaluated with OCTA in both the superficial and deep capillary plexus layers by using 3 mm×3 mm images of the macular. The central macular thickness (CMT), inner retinal layer thickness (IRT), outer retinal layer thickness (ORT), subfoveal choroidal thickness (SFCT), and the status of ellipsoid zone (EZ) were assessed with spectral-domain optical coherence tomography. The differences of FAZ areas between the two groups were analyzed. The correlative analysis was performed to investigate the relationship between areas and foveal morphology. Results Compared with control group, the FAZ area in superficial and deep capillary plexus in the IMEM group were significantly smaller (t=−29.095, −28.743; P<0.001, <0.001); the mean CMT, IRT, ORT and SFCT were significantly thickening in the IMEM group (Z=−8.784, −8.524, −7.709, −7.535; P<0.001, <0.001, <0.001, <0.001). In the IMEM group, the FAZ area in superficial capillary plexus correlated inversely with the CMT, IRT, and the integrity of EZ (r=−0.464, −0.536, −0.293; P<0.001, <0.001, 0.039), no significant correlation of superficial plexus FAZ areas with ORT and SFCT (r=−0.218, −0.165; P=0.172, 0.157). The FAZ area in deep capillary plexus correlated inversely with the CMT, IRT, and the integrity of EZ (r=−0.306, −0.694, −0.468; P=0.037, <0.001, <0.001), no significant correlation with ORT and SFCT (r=−0.242, −0.227; P=0.079, 0.094). Conclusions The FAZ areas is significantly decreased in IMEM eyes compared with normal eyes. Both superficial and deep FAZ area are correlated with the CMT, IRT, and the integrity of EZ.

关键词: 黄斑; ; 体层摄影术,光学相干; 中心凹无血管区

Key words: Macula lutea; Membranes; Tomography, optical coherence; Foveal avascular zone

引用本文: 曾苗, 陈晓, 洪玲, 蔡春艳, 晏颖, 黄志坚. 特发性黄斑前膜患者中心凹无血管区面积与中心凹形态相关性研究. 中华眼底病杂志, 2019, 35(1): 15-19. doi: 10.3760/cma.j.issn.1005-1015.2019.01.004 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Bu SC, Kuijer R, Li XR, et al. Idiopathic epiretinal membrane[J]. Retina, 2014, 34(12): 2317-2335. DOI: 10.1097/iae.0000000000000349.
2. Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Graefe’s Arch Clin Exp Ophthalmol, 2009, 247(7): 865-883. DOI: 10.1007/s00417-009-1082-x.
3. Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 254(5): 873-879. DOI: 10.1007/s00417-015-3143-7.
4. Lee SM, Pak KY, Kwon HJ, et al. Association between tangential contraction and early vision loss in idiopathic epiretinal membrane[J]. Retina, 2018, 38(3): 541-549. DOI: 10.1097/iae.0000000000001559.
5. Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography[J]. Ophthalmology, 2014, 121(1): 180-187. DOI: 10.1016/j.ophtha.2013.09.002.
6. Sigler EJ, Randolph JC, Charles S. Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane[J]. Graefe’s Arch Clin Exp Ophthalmol, 2013, 251(7): 1679-1685. DOI: 10.1007/s00417-012-2253-8.
7. Romano MR, Cennamo G, Schiemer S, et al. Deep and superficial OCT angiography changes after macular peeling: idiopathic vs diabetic epiretinal membranes[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 255(4): 681-689. DOI: 10.1007/s00417-016-3534-4.
8. Spina CL, Carnevali A, Marchese A, et al. Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings[J]. Retina, 2017, 37(9): 1636-1641. DOI: 10.1097/IAE.0000000000001426.
9. Springer AD, Hendrickson AE. Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing[J]. Vis Neurosci, 2005, 22(2): 171-185. DOI: 10.1017/s095252380522206x.
10. Romano MR, Cennamo G, Amoroso F, et al. Intraretinal changes in the presence of epiretinal traction[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 255(1): 31-38. DOI: 10.1007/s00417-016-3413-z.
11. Okamoto F, Sugiura Y, Okamoto Y, et al. Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 6770-6775. DOI: 10.1167/iovs.12-9683.
12. Arichika S, Hangai M, Yoshimura N. Correlation between thickening of the inner and outer retina and visual acuity in patients with epiretinal membrane[J]. Retina, 2010, 30(3): 503-508. DOI: 10.1097/iae.0b013e3181bd2d65.
13. Mitamura Y, Hirano K, Baba T, et al. Correlation of visual recovery to presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery[J]. Br J Ophthalmol, 2009, 93(2): 171-175. DOI: 10.1136/bjo.2008.146381.
14. Casini G, Loiudice P, Lazzeri S, et al. Analysis of choroidal thickness change after 25-gauge vitrectomy for idiopathic epiretinal membrane with or without phacoemulsification and intraocular lens implantation[J]. Ophthalmologica, 2017, 237(2): 78-84. DOI: 10.1159/000452769.
15. Samara WA, Say ET, Khoo CL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2188-2195. DOI: 10.1097/iae.0000000000000847.
16. Govetto A, Lalane RA, Sarraf D, et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme[J]. Am J Ophthalmol, 2017, 175(3): 99-113. DOI: 10.1016/j.ajo.2016.12.006.