中华眼底病杂志

中华眼底病杂志

视网膜分支静脉阻塞继发黄斑水肿抗血管内皮生长因子药物治疗前后黄斑区微血管结构改变

查看全文

目的观察视网膜分支静脉阻塞(BRVO)伴黄斑水肿(ME)患者抗VEGF药物治疗前后黄斑区微血管结构变化。方法回顾性病例研究。2016年11月至2018年6月在北京医院眼科检查确诊的单眼颞侧BRVO伴ME(BRVO-ME)患者32例32只眼纳入研究,其中,男性14例14只眼,女性18例18只眼。平均年龄(57.81±10.58)岁;平均病程(12.13±7.13)d。将BRVO-ME眼静脉阻塞侧定义为受累侧。双眼均行BCVA、OCT血管成像(OCTA)检查。患眼行玻璃体腔注射抗VEGF药物治疗,每一个月1次,连续3个月。采用OCTA仪对双眼黄斑区3 mm×3 mm范围进行扫描,测量治疗前后视网膜浅层毛细血管层(SCP)、深层毛细血管层(DCP)血流密度,黄斑中心凹无血管区(FAZ)面积、周长(PERIM)、非圆度指数(AI)以及FAZ范围300 μm宽度内的血流密度(FD-300),中心凹视网膜厚度(CRT)。治疗前后黄斑区血流密度、FAZ参数比较行配对t检验;治疗前血流密度与BCVA、FAZ面积关系采用一元线性相关回归分析。结果治疗前,与对侧健康眼比较,BRVO-ME眼黄斑区SCP、DCP血流密度降低,差异均有统计学意义(t=6.589,9.753,P=0.000、0.000);PERIM、AI增加,FD-300降低,差异均有统计学意义(t=4.054、4.988、2.963,P=0.000、0.000、0.006);FAZ面积扩大,但差异无统计学意义(t=0.928,P=0.361)。相关性分析结果显示,治疗前BCVA、FAZ面积分别与受累侧DCP血流密度呈正相关和负相关(r=0.462、−0.387,P<0.05)。连续3次治疗后,BRVO-ME眼CRT下降,BCVA提高,FD-300降低,差异均有统计学意义(t=9.865、−10.573、3.256,P<0.05);PERIM、AI无明显变化,差异无统计学意义(t=0.520、2.004,P=0.607、0.054);黄斑区SCP血流密度降低,差异有统计学意义(t=2.814,P=0.008);DCP血流密度变化不明显,差异无统计学意义(t=−0.661,P=0.514),但与第1次治疗后比较,第2次治疗后DCP血流密度增加,差异有统计学意义(t=3.132,P=0.004);FAZ面积扩大,差异有统计学意义(t=5.340,P=0.000);每次治疗后,FAZ面积逐渐扩大,差异均有统计学意义(t=2.907、3.742、2.203,P<0.05)。结论BRVO-ME眼SCP、DCP血流密度降低,且DCP血流密度与BCVA呈正相关,与FAZ面积呈负相关;抗VEGF药物治疗后,SCP血流密度下降,DCP血流密度增加,FAZ面积逐渐扩大,PERIM和AI无明显变化。

ObjectiveTo observe the alterations of microvascular structure in patients with macular edema (ME) associated with branch retinal vein occlusion (BRVO) before and after anti-VEGF drug therapy.MethodsA retrospective case study. Thirty-two eyes of 32 patients with unilateral BRVO-ME at Department of Ophthalmology in Beijing Hospital during November 2016 to June 2018 were enrolled in this study. There were 14 males (14 eyes) and 18 females (18 eyes), with the mean age of 57.81±10.58 years, and the mean course of the disease of 12.13±7.13 d. The affected eyes was defined as the eyes with BRVO-ME. All the affected eyes received intravitreal anti-VEGF drug injections (3+PRN). BCVA and OCT angiography (OCTA) were performed on the BRVO and fellow eyes before and after intravitreal anti-VEGF drug injections. The scanning region in the macular area was 3 mm×3 mm. Macular blood flow density in the superficial capillary plexus (SCP) and deep capillary plexus (DCP), macular hemodynamics parameters [foveal avascular area (FAZ) area, perimeter (PERIM), acircularity index (AI) and vessel density within a 300um width ring surrounding the FAZ (FD-300)] and central retinal thickness (CRT) were measured in all eyes. Paired samples t-test and Univariate Linear Regression were used in this study.ResultsComparing with fellow eyes, the mean macular blood flow density measured in the entire scan was lower in BRVO-ME eyes in the SCP (t=6.589, P=0.000) and DCP (t=9.753, P=0.000), PERIM (t=4.054, P=0.000) ), AI enlarged in BRVO-ME eyes (t=4.988, P=0.000), FD-300 was lower in BRVO-ME eyes (t=2.963, P=0.006), FAZ area enlarged in BRVO-ME eyes (t=0.928, P=0.361). The blood flow density in the DCP was the parameter most significantly correlated with BCVA and FAZ area (r=0.462, −0.387;P< .05). After 3 intravitreal injections of anti-VEGF drug, the CRT and FD-300 decreased, BCVA increased (t=9.865, 3.256, −10.573; P<0.05), PERIM and AI was not changed significantly (t=0.520, 2.004; P>0.05). The blood flow density in the SCP decreased (t=2.814, P<0.05), but the blood flow density in the DCP was not changed significantly (t=0.661, P=0.514). Contrarily, comparing with after 1 anti-VEGF drug injection, the blood flow density in the DCP increased after 2 anti-VEGF drug injections (t=3.132, P<0.05). FAZ area enlarged in BRVO-ME eyes (t=5.340, P<0.001). Comparing with last anti-VEGF drug injection, FAZ area enlarged after every anti-VEGF drug injection (t=2.907, 3.742, 2.203; P<0.05).ConclusionsIn BRVO-ME eyes, the blood flow density in the SCP and DCP are decreased. The blood flow density in the DCP is positively correlated with BCVA and negatively correlated with FAZ area. After anti-VEGF drug therapy, the blood flow density is decreased in the SCP and increased in the DCP, FAZ area enlarged gradually, PERIM and AI are not changed significantly.

关键词: 局部血流; 视网膜静脉闭塞/治疗; 黄斑水肿/治疗; 血管生成抑制剂/治疗应用; 体层摄影术,光学相干

Key words: Retinal vein occlusion/therapy; Macular edema/therapy; Angiogenesis inhibitors/therapeutic use; Tomography, optical coherence; Regional blood flow

引用本文: 李可嘉, 喻晓兵, 戴虹. 视网膜分支静脉阻塞继发黄斑水肿抗血管内皮生长因子药物治疗前后黄斑区微血管结构改变. 中华眼底病杂志, 2019, 35(1): 25-30. doi: 10.3760/cma.j.issn.1005-1015.2019.01.006 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Scott IU, VanVeldhuisen PC, Oden NL, et al. Baseline predictors of visual acuity and retinal thickness outcomes in patients with retinal vein occlusion. SCORE study report 10[J]. Ophthalmology, 2011, 118(2): 345-352. DOI: 10.1016/j.ophtha.2010.06.034.
2. Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six month primary end point results of a phase Ⅲ study[J]. Ophthalmology, 2010, 117(6): 1102-1112. DOI: 10.1016/j.ophtha.2010.02.021.
3. Huang D, Jia Y, Gao SS, et al. Optical coherence tomography angiography using the optovue device[J]. Dev Ophthalmol, 2016, 56: 6-12. DOI: 10.1159/000442770.
4. Lupidi M, Coscas F, Cagini C, et al. Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 169: 9-23. DOI: 10.1016/j.ajo.2016.06.008.
5. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
6. Carpineto P, Mastropasqua R, Marchini G, et al. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography[J]. Br J Ophthalmol, 2016, 100(5): 671-676. DOI: 10.1136/bjophthalmol-2015-307330.
7. Chalam KV, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. J Ophthalmic Vis Res, 2016, 11(1): 84-92. DOI: 10.4103/2008-322X.180709.
8. Brown DM, Campochiaro PA, Bhisitkul RB, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase Ⅲ study[J]. Ophthalmology, 2011, 118(8): 1594-1602. DOI: 10.1016/j.ophtha.2011.02.022.
9. 卢宁, 张承芬. 视网膜分支静脉阻塞[M]//张承芬. 眼底病学.2版. 北京:人民卫生出版社, 2010: 237-243.Lu N, Zhang CF. Branch retinal vein occlusion[M]//Zhang CF. Diseases of ocular fundus.2nd ed. Beijing: People’s Medical Publishing House, 2010: 237-243.
10. Suzuki N, Hirano Y, Yoshida M, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion[J]. Am J Ophthalmol, 2016, 161: 126-132. DOI: 10.1016/j.ajo.2015.09.038.
11. Coscas F, Glacet-Bernard A, Miere A, et al. Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa[J]. Am J Ophthalmol, 2016, 161: 160-171. DOI: 10.1016/j.ajo.2015.10.008.
12. Rispoli M, Savastano MC, Lumbroso B. Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2332-2338. DOI: 10.1097/IAE.0000000000000845.
13. Adhi M, Filho MA, Louzada RN, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 486-494. DOI: 10.1167/iovs.15-18907.
14. Wakabayashi T, Sato T, HaraUeno C, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2087-2094. DOI: 10.1167/iovs.16-21208.
15. Parodi MB, Visintin F, Della Rupe P, et al. Foveal avascular zone in macular branch retinal vein occlusion[J]. Int Ophthalmol, 1995, 19(1): 25-28. DOI: 10.1007/BF00156415.
16. 李可嘉, 喻晓兵, 陈沁. 视网膜分支静脉阻塞患眼黄斑区血流密度及黄斑中心凹无血管区面积测量结果观察[J]. 中华眼底病杂志, 2018, 34(1): 17-20. DOI: 10.3760/cma.j.issn.1005-1015.2018.01.005.Li KJ, Yu XB, Cheng Q. The alterations of macular vascular density and the area of foveal avascular zone in branch retinal vein occlusion eyes[J]. Chin J Ocul Fundus Dis, 2018, 34(1): 17-20. DOI: 10.3760/cma.j.issn.1005-1015.2018.01.005.
17. Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreal injections of vascular endothelial growth factor produce retinal ischemia and microangiography in an adult primate[J]. Ophthalmology, 1996, 103: 1820-1828. DOI: 10.1016/S0161-6420(96)30420-X.
18. Sabet-Peyman EJ, Heussen FM, Thorne JM, et al. Progression of macular ischemia following intravitreal bevacizumab[J]. Ophthalmic Surg Lasers Imaging, 2009, 40(3): 316-318. DOI: 10.3928/15428877-20090430-17.
19. Shimura M, Yasuda K. Macular ischemia after intravitreal bevacizumab injection in patients with central retinal vein occlusion and a history of diabetes and vascular disease[J]. Br J Ophthalmol, 2010, 94(3): 381-383. DOI: 10.1136/bjo.2009.160986.
20. Campochiaro PA, Bhisitkul RB, Shapiro H, et al. Vascular endothelial growth factor promotes progressive retinal nonperfusion in patients with retinal vein occlusion[J]. Ophthalmology, 2013, 120(4): 795-802. DOI: 10.1016/j.ophtha.2012.09.032.
21. Hayreh SS, Zimmerman MB, Podhajsky P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics[J]. Am J Ophthalmol, 1994, 117(4): 429-441. DOI: 10.1016/S0002-9394(14)70001-7.