中华眼底病杂志

中华眼底病杂志

特发性脉络膜新生血管患眼抗血管内皮生长因子药物治疗后血流密度变化

查看全文

目的观察特发性脉络膜新生血管(ICNV)患眼玻璃体腔注射抗VEGF药物治疗后血流密度的改变。方法回顾性病例分析。2017年5月至2018年5月于武汉大学人民医院眼科中心FFA及OCT检查确诊的ICNV患者16例16只眼纳入研究。其中,男性4例4只眼,女性12例12只眼。平均年龄(33.94±9.83)岁;平均发病时间(5.13±4.44)周。均为单眼发病。所有患者均行BCVA、FFA、OCT及OCT血管成像(OCTA)检查。BCVA记录时转换为logMAR视力。OCT测量黄斑中心凹视网膜厚度(CMT);OCTA测量CNV病灶选定面积(CSA)及CNV血流面积(CFA)。患眼平均logMAR BCVA 0.336±0.163、CMT(268.500±57.927)μm、CSA(0.651±0.521)mm2、CFA(0.327±0.278)mm2。患眼均行玻璃体腔注射10 mg/ml雷珠单抗0.05 ml(含雷珠单抗0.5 mg)治疗。治疗后1个月重复行相关检查,对比观察患眼治疗前后BCVA、CMT、CSA及CFA的变化。采用Pearson相关性分析法分析治疗后logMAR BCVA与治疗前后CMT、CSA、CFA的相关性。结果治疗后1个月,患眼平均logMAR BCVA 0.176±0.111、CMT(232.500±18.910)μm、CSA(0.420±0.439)mm2、CFA(0.215±0.274)mm2。与治疗前比较,患眼logMAR BCVA(t=5.471,P<0.001)、CMT(t=2.527,P=0.023)、CSA(t=4.039,P=0.001)、CFA(t=4.214,P=0.001)均降低,差异均有统计学意义。Pearson相关性分析结果显示,患眼治疗后logMAR BCVA与治疗前CSA、治疗后CSA呈中度正相关(r=0.553、0.560,P=0.026、0.024),与治疗前CFA、治疗后CFA呈强正相关(r=0.669、0.606,P=0.005、0.013);与治疗前CMT、治疗后CMT无显著相关性(r=0.144、−0.149,P=0.594、0.583)。结论ICNV患眼抗VEGF药物治疗后血流密度显著降低。

ObjectiveTo assess changes of blood flow density of idiopathic choroidal neovascularization (ICNV) treated with intravitreal anti-vascular endothelial growth factor (anti-VEGF).MethodsRetrospective case analysis. Sixteen eyes of 16 patients with ICNV diagnosed with FFA and OCT were included in this study. Among them, 12 were female and 4 were male. The mean age was 33.94±9.83 years. The mean course of diseases was 5.13±4.44 weeks. The BCVA, indirect ophthalmoscope, OCT and OCT angiography (OCTA) were performed at the first diagnosis in all patients. The BCVA was converted to logMAR. The macular fovea retinal thickness (CMT) was measured by OCT, and the selected area of CNV (CSA) and flow area of CNV (CFA) were measured by OCTA. The mean logMAR BCVA, CMT, CSA and CFA were 0.336±0.163, 268.500±57.927 μm, 0.651±0.521 mm2, 0.327±0.278 mm2 , respectively. All patients were treated with intravitreal ranibizumab (IVR, 10 mg/ml, 0.05 ml). Follow-up results including the BCVA, fundus color photography, OCT and OCTA were obtained 1 month after treatment. To compare the changes of BCVA, CMT, CSA, CFA of ICNV treated with anti-VEGF. Pearson method was used to analyze the correlation between logMAR BCVA and CMT, CSA and CFA before and after the treatment.ResultsOne month after treatment, the average logMAR BCVA, CMT, CSA and CFA were 0.176±0.111, 232.500±18.910 μm, 0.420±0.439 mm2, 0.215±0.274 mm2. The mean logMAR BCVA (t=5.471, P<0.001), CMT (t=2.527, P=0.023), CSA (t=4.039, P=0.001), CFA (t=4.214, P=0.001) significantly decreased at 1 month after injection compared to baseline, and the difference had statistical significance. The results of correlation analysis showed that the post-logMAR BCVA was moderately positively correlated with pre-CSA and post-CSA (r=0.553, 0.560; P=0.026, 0.024), and strongly correlated with pre-CFA and post-CFA (r=0.669, 0.606; P=0.005, 0.013), but not correlated with pre-CMT and post-CMT (r=0.553, 0.560; P=0.026, 0.024).ConclusionThe blood flow density of ICNV measured by OCTA were significantly decreased in the treatment of anti-VEGF drugs.

关键词: 局部血流; 体层摄影术,光学相干; 脉络膜新生血管化/治疗; 血管生成抑制剂/治疗应用; 抗体,单克隆/治疗应用

Key words: Regional blood flow; Tomography, optical coherence; Choroidal neovascularization/therapy; Angiogenesis inhibitors/therapeutic use; Antibodies, monoclonal/therapeutic use

引用本文: 刘珏君, 陈长征, 易佐慧子, 王晓玲, 许阿敏, 何璐. 特发性脉络膜新生血管患眼抗血管内皮生长因子药物治疗后血流密度变化. 中华眼底病杂志, 2019, 35(1): 31-35. doi: 10.3760/cma.j.issn.1005-1015.2019.01.007 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Fan C, Ji Q, Wang Y, et al. Clinical efficacy of intravitreal ranibizumab in early and mid-idiopathic choroidal neovascularization[J/OL]. J Ophthalmol, 2014, 2014: 382702[2014-04-27]. https://dx.doi.org/10.1155/2014/382702. DOI: 10.1155/2014/382702.
2. Fukuchi T, Takahashi K, Ida H, et al. Staging of idiopathic choroidal neovascu larization by optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2001, 239(6): 424-429. DOI: 10.1007/s004170100296.
3. Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. DOI: 10.1016/j.preteyeres.2017.11.003.
4. Faridi A, Jia Y, Gao SS, et al. Sensitivity and specificity of OCT angiography to detect choroidal neovascularization[J]. Ophthalmol Retina, 2017, 1(4): 294-303. DOI: 10.1016/j.oret.2017.02.007.
5. Sudhalkar A, Yogi R, Chhablani J. Anti-vascular endothelial growth factor therapy for naive idiopathic choroidal neovascularization: a comparative study[J]. Retina, 2015, 35(7): 1368-1374. DOI: 10.1097/IAE.0000000000000491.
6. Carreno E, Moutray T, Fotis K, et al. Phase Ⅱb clinical trial of ranibizumab for the treatment of uveitic and idiopathic choroidal neovascular membranes[J]. Brit J Ophthalmol, 2016, 100(9): 1221-1226. DOI: 10.1136/bjophthalmol-2015-307806.
7. Coscas F, Coscas G, Souied E, et al. Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2007, 144(4): 592-599. DOI: 10.1016/j.ajo.2007.06.014.
8. Shah SN, Kang QY, Fan XJ, et al. Optical coherence tomography characteristics of responses to intravitreal bevacizumab in idiopathic choroidal neovascularization[J]. Int J Ophthalmol, 2016, 9(2): 271-274. DOI: 10.18240/ijo.2016.02.17.
9. Chen Q, Yu X, Sun Z, et al. The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization[J]. J Ophthalmol, 2016, 2016: 5608250 [2016-07-06]. http://dx.doi.org/10.1155/2016/5608250. DOI: 10.1155/2016/5608250.
10. 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病专业委员会. 我国眼底相干光层析血管成像术的操作和阅片规范(2017年)[J]. 中华眼科杂志, 2017, 53(10): 729-734. DOI: 10.3760/cma.j.issn0412.4081.2017.10.003.Chinese Ocular Fundus Diseases Society, Chinese Ophthalmological Society, Chinese Medical Association; Professional Committee of Fundus Diseases, Ophthalmologist Branch of Chinese Doctors Association. Standards for operations and reading of coherent optical tomography angiography in China (2017)[J]. Chin J Ophthalmol, 2017, 53(10): 729-734. DOI: 10.3760/cma.j.issn0412.4081.2017.10.003.
11. 魏文斌, 周楠. 光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景[J]. 中华眼底病杂志, 2018, 34(4): 317-322. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.002.Wei WB, Zhou N. The shortcoming and developing perspective of optical coherence tomography angiography in clinical diagnosis and treatment of ocular fundus diseases[J]. Chin J Ocul Fundus Dis, 2018, 34(4): 317-322. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.002.
12. Told R, Sacu S, Hecht A, et al. Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2393-2400. DOI: 10.1167/iovs.17-22902.
13. Coscas G, Lupidi M, Coscas F, et al. Optical coherence tomography angiography during follow-up: qualitative and quantitative analysis of mixed type Ⅰand Ⅱ choroidal neovascularization after vascular endothelial growth factor trap therapy[J]. Ophthalmic Res, 2015, 54(2): 57-63. DOI: 10.1159/000433547.
14. Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization[J]. Am J Ophthalmol, 2015, 160(1): 6-16. DOI: 10.1016/j.ajo.2015.04.012.
15. 孙晓丽, 丛春霞, 李立, 等. 光相干断层扫描血管成像与传统多模式眼底成像对渗出型老年性黄斑变性脉络膜新生血管诊断与活动性判断的对比观察[J]. 中华眼底病杂志, 2017, 33(1): 10-14. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.004.Sun XL, Cong CX, Li L, et al. Optical coherence tomography angiography and traditional multimodal fundus imaging in the diagnosis and activity evaluation of choroidal neovascularization in exudative age-related macular degeneration[J]. Chin J Ocul Fundus Dis, 2017, 33(1): 10-14. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.004.
16. Inoue M, Kadonosono K, Watanabe Y, et al. Results of 1-year follow-up examination s after intravitreal bevacizumab administration for idiopathic choroidal neovas cularization[J]. Retina, 2010, 30(5): 733-738. DOI: 10.1097/IAE.0b013e3181c9699c.
17. Miere A, Butori P, Cohen SY, et al. Vascular remodeling of choroidal neovascul arization after anti-vascular endothelial growth factor therapy visualized on optical coherence tomography angiography[J/OL].Retina, 2017, 2017: E1[2017-11-23]. https://insights.ovid.com/crossref?an=00006982-900000000-96687. DOI: 10.1097/IAE.0000000000001964. [published online ahead of print].
18. Lumbroso B, Rispoli M, Savastano MC, et al. Optical coherence tomography angiography study of choroidal neovascularization early response after treatment[J]. Dev Ophthalmol, 2016, 56: 77-85. DOI: 10.1159/000442782.
19. Marques JP, Costa JF, Marques M, et al. Sequential morphological changes in the CNV net after intravitreal anti-VEGF evaluated with OCT angiography[J]. Ophthalmic Res, 2016, 55(3): 145-151. DOI: 10.1159/000442671.
20. Fan X, Gao N, Li J, et al. Effects of VEGF levels on anti-VEGF therapy for patients with idiopathic choroidal neovascularization[J]. Mol Cell Biochem, 2018, 441(1-2): 173-179. DOI: 10.1007/s11010-017-3183-x.
21. Hsiao YS, Wolfson Y, Tian J, et al. Improved visualization and quantification of oct angiography data using a novel 3D projection artifacts removal algorithm[JOL]. Invest Ophth Vis Sci, 201758(8): 5998[2017-05-07]. https://iovs.arvojournals.org/article.aspx?articleid=2637717.
22. Nesper PL, Soetikno BT, Treister AD, et al. Volume-rendered projection-resolved oct angiography: 3D lesion complexity is associated with therapy response in wet age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 1944-1952. DOI: 10.1167/iovs.17-23361.
23. Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases[J]. Clin Exp Ophthalmol, 2016, 44(5): 388-399. DOI: 10.1111/ceo.12683.