中华眼底病杂志

中华眼底病杂志

老年性黄斑变性不同活动性脉络膜新生血管的光相干断层扫描血管成像观察

查看全文

目的 观察老年性黄斑变性(AMD)不同活动性脉络膜新生血管(CNV)的OCT血管成像(OCTA)影像特征。 方法 回顾性病例分析。2017年1月至2018年10月在云南省第二人民医院眼科经多模式眼底影像检查确诊的AMD患者33例42只眼纳入研究。其中,男性21例,女性12例;平均年龄(65.30±8.61)岁。均行BCVA、裂隙灯显微镜、间接检眼镜、眼底彩色照相、FAF、FFA、OCTA检查。根据眼底影像特征和治疗过程综合分析,将CNV分为活动性、非活动CNV,分别为19例27只眼和14例15只眼。采用OCTA仪对病变部位进行水平扫描,选择图像质量与位置较佳的图像进行标记保存。对比观察不同活动性CNV的OCTA影像特征。不同活动性CNV病灶内小血管分支、病灶周边环形吻合、弱反射晕环、粗大滋养血管、扩张的脉络膜血管眼数的构成比比较行χ2检验。 结果 活动性CNV 27只眼中,病灶内可见密集的小毛细血管分支结构22只眼(81.5%);病灶边缘血管末梢互相吻合呈“弓形”或“环形”26只眼(96.3%);病灶周围可见宽度不一的弱反射“晕环”23只眼(85.2%)。所有患眼病灶内未见粗大滋养血管。非活动性CNV 15只眼中,病灶内可见粗大血管分支13只眼(13.3%);病灶边缘血管孤立分支12只眼(80.0%);病灶内粗大滋养血管8只眼(53.3%)。所有患眼病灶内未见弱反射“晕环”结构。不同活动性CNV者,病灶内具有密集的小血管分支(χ2=22.759)、病灶周边环形吻合(χ2=31.704)、弱反射晕环(χ2=32.327)、粗大滋养血管(χ2=26.063)、扩张的脉络膜血管(χ2=32.912)眼数的构成比比较,差异均有统计学意义(P=0.000、0.000、0.000、0.000、0.000)。 结论 活动性CNV表现为病灶内丰富的小血管分支、周边吻合呈环形结构及病灶周围弱反射晕环结构;非活动性CNV表现为病灶内粗大的滋养血管、扩张的脉络膜血管。

Objective To observe the OCT angiography imaging features of choroidal neovascularization (CNV) with different activity in age-related macular degeneration (AMD). Methods A retrospective case analysis. Forty-two eyes of 33 patients (21 males and 12 females, aged 65.3±8.61 years) who were diagnosed with AMD by multi-mode fundus imaging examination at the Ophthalmology Department of Yunnan Second People's Hospital during January 2017 and October 2018 were enrolled in this study. All patients underwent BCVA, slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus colorized photography, FAF, FFA and OCT examinations. The patients were divided into active CNV (27 eyes of 19 patients) and inactive CNV (15 eyes of 14 patients) by comprehensive analysis of fundus imaging characteristics and treatment process. The imaging features of OCTA in the two groups were compared. The number of eyes of each active or inactive indicator in the active CNV group and the inactive CNV group was calculated, and the composition ratio of each group of the indicators was subjected to the χ2 test. Results Among the 27 eyes of active CNV, 22 eyes (81.5%) of OCTA showed abundant small capillary branching structure, while 13 eyes (13.3%) of 15 eyes of inactive CNV showed more coarse blood vessel. Among the 27 eyes of active CNV, 26 eyes (96.3%) of OCTA showed that the marginal vascular end points of CNV lesions were "arcaded" or "ring", while 12 eyes (80.0%) of 15 eyes of inactive CNV showed the presence of isolated branches of peripheral vessels. Among the 27 eyes with active CNV lesions, there were no large feeder vessels inside the lesions, and 8 (53.3%) of the 15 inactive CNV lesions showed feeder vessels in the center of the lesion. Among the 27 eyes with active lesions, 23 eyes (85.2%) of OCTA showed a low-reflection "halo" around the CNV lesion, and no low-reflection "halo" structure was observed in the 5 eyes of the inactive CNV lesion. The statistical results showed that there were abundant small blood vessel branches (χ2=22.759, P=0.000), annular anastomosis around the lesion (χ2=31.704, P=0.000), low-reflection halo (χ2=32.327, P=0.000), and large nourishing blood vessels (χ2=26.063, P=0.000), dilated choroidal vessels (χ2=32.912, P=0.000). All the above indicators were statistically different between the two groups. Conclusion The abundant small vessel branches in OCTA, the surrounding anastomosis in a ring structure and the low reflex halo around the lesion are markers of active CNV, while the large feeding vessels and dilated choroidal vessels are indicators of inactive CNV.

关键词: 湿性黄斑变性; 脉络膜新生血管化; 体层摄影术,光学相干

Key words: Wet macular degeneration; Choroidal neovascularization; Tomography, optical coherence

引用本文: 张娟, 黎铧, 罗晨峻, 张利伟, 李娟娟. 老年性黄斑变性不同活动性脉络膜新生血管的光相干断层扫描血管成像观察. 中华眼底病杂志, 2019, 35(1): 40-44. doi: 10.3760/cma.j.issn.1005-1015.2019.01.009 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. van Romunde SH, Polito A, Bertazzi L, et al. Long-term results of full macular translocation for choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 2015, 122(7): 1366-1374. DOI: 10.1016/j.ophtha.2015.03.012.
2. Sarraf D, Joseph A, Rahimy E. Retinal pigment epithelial tears in the era of intravitreal pharmacotherapy: risk factors, pathogenesis, prognosis and treatment (an American Ophthalmological Society thesis)[J]. Trans Am Ophthalmol Soc, 2014, 112: 142-159.
3. Levison AL, Baynes KM, Lowder CY, et al. Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis[J]. Br J Ophthalmol, 2017, 101(5): 616-622. DOI: 10.1136/bjophthalmol-2016-308806.
4. Lupidi M, Coscas G, Cagini C, et al. Optical coherence tomography angiography of a choroidal neovascularization in adult onset foveo-macular vitelliform dystrophy: pearls and pitfalls[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 7638-7645. DOI: 10.1167/iovs.15-17603.
5. Gao SS, Liu G, Huang D, et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Opt Lett, 2015, 40(10): 2305-2308. DOI: 10.1364/OL.40.002305.
6. Moussa M, Leila M, Khalid H. Imaging choroidal neovascular membrane using en face swept-source optical coherence tomography angiography[J]. Clin Ophthalmol, 2017, 11: 1859-1869. DOI: 10.2147/OPTH.S143018.
7. Kano M, Sekiryu T, Sugano Y, et al. Foveal structure during the induction phase of anti-vascular endothelial growth factor therapy for occult choroidal neovascularization in age-related macular degeneration[J]. Clin Ophthalmol, 2015, 9: 2049-2056. DOI: 10.2147/OPTH.S90932.
8. Miere A, Semoun O, Cohen SY, et al. Optical coherence tomography angiograhphy features of subretinal fibrosis in age-related macular degeneration[J]. Retina, 2015, 35(11): 2275-2284. DOI: 10.1097/IAE.0000000000000819.
9. Novais EA, Adhi M, Moult EM, et al. Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 164: 80-88. DOI: 10.1016/j.ajo.2016.01.011.
10. Spaide RF, Suzuki M, Yannuzzi LA, et al. Volume-rendered angiographic and structure aloptical coherence tomography[J]. Retina, 2015, 35(11): 2181-2187. DOI: 10.1097/IAE.0000000000001344.
11. Sulzbacher F, Kiss C, Munk M, et al. Diagnostic evaluation of type 2(classic) choroidal neovascularization: optical coherence tomography, indocyanine green angiography, an fluorescein angiography[J]. Am J Ophthalmol, 2011, 152: 799-806. DOI: 10.1016/j.ajo.2011.04.011.
12. El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218. DOI: 10.1097/IAE.0000000000000773.
13. Coscas G, Lupidi M, Coscas F, et al. Toward a specific classification of polypoidal choroidal vasculopathy: idiopathic disease or subtype of age related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56: 3187-3195. DOI: 10.1167/iovs.14-16236.
14. Kuehlewein L, Dansingani KK, de Carlo TE, et al. Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration[J]. Retina, 2015, 35(11): 2229-2235. DOI: 10.1097/IAE.0000000000000835.
15. Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 2014, 121(7): 1435-1444. DOI: 10.1016/j.ophtha.2014.01.034.