中华眼底病杂志

中华眼底病杂志

扁平不规则视网膜色素上皮脱离患眼脉络膜新生血管的光相干断层扫描血管成像观察

查看全文

目的观察扁平不规则RPE脱离(FIPED)患眼脉络膜新生血管(CNV)发生情况。 方法回顾性病例分析。频域OCT检查发现FIPE而未能确定诊断的45例患者49只眼纳入研究。其中,男性25例28只眼,女性20例21只眼。平均年龄(61.02±9.29)岁。患者均行FFA、ICGA、频域OCT以及OCTA检查。FIPED定义为OCT B-scan图像中RPE呈不规则状隆起,同时Bruch膜清晰可见。OCTA的CNV诊断标准:视网膜深层至脉络膜层出现异常血管信号。根据OCT图像特征将CNV分为1型CNV、2型CNV。根据FFA影像特征将CNV分为典型性、隐匿性CNV。49只眼中,眼底血管造影检查发现伴CNV 18只眼(36.7%),未见CNV特征性表现31只眼(63.3%)。FFA检查发现典型CNV1只眼,隐匿型CNV7只眼,OCT确诊均为1型CNV;透见荧光等41只眼。ICGA检查,CNV样强荧光斑、晚期可疑强荧光斑、脉络膜高通透性等分别为18、20、11只眼;18只CNV眼OCT确诊为1型CNV。对比观察OCTA、眼底血管造影对CNV的检出情况。 结果49只FIPED患眼中,OCTA检出1型CNV 36只眼(73.5%),FIPED内可见完全或部分强反射信号;未伴CNV 13只眼(26.5%),其中FIPED内呈部分强反射信号9只眼,呈弱反射信号4只眼。FFA检查为经典型及隐匿型CNV的1、7只眼,OCTA均检出1型CNV。ICGA检出CNV的18只眼中,OCTA同样发现1型CNV。ICGA晚期可疑强荧光斑20只眼中,OCTA检查发现1型CNV 17只眼;脉络膜高通透性等11只眼中,OCTA检查发现1型CNV 1只眼。OCT检查,伴CNV的 36只眼中,神经上皮脱离(SRD)、未见SRD及视网膜层间囊腔分别为32、2、2只眼。 结论OCTA可发现73.5%的FIPED患眼伴CNV;与传统眼底血管造影比较,OCTA对FIPED下CNV的检出率更高。内部强反射信号的FIPED对1型CNV有一定的诊断价值。

ObjectiveTo assess the occurrence of CNV in patients presenting with flat irregular pigment epithelial detachments (FIPED). MethodsForty-five patients (49 eyes) with FIPED on OCT were enrolled in this retrospective study. There were 25 males (28 eyes) and 20 females (21 eyes). The mean age was 61.022±9.292 years. FFA, ICGA, spectral domain OCT and OCT angiography (OCTA) were performed in all patients during the same period. The FIPED was defined as an irregular elevation of the RPE allowing distinct visualization of Bruch’s membrane on OCT B-scan. The abnormal vascular signals from the deep retinal layer to the choroid layer on OCTA was defined as CNV. The CNV was classified into a type 1 CNV and a type 2 CNV according to the OCT characteristics. The CNV was classified into a typical and occult CNV according to the characteristics of the FFA image. Of all 49 eyes, fundus angiography revealed 18 eyes (36.7%) with CNV, and 31 eyes (63.3%) with no characteristic signs of CNV. FFA examination found that CNV in 8 eyes (classic CNV in 1 eyes, occult CNV in 7 eyes), which confirmed by OCT were type 1 CNV; transmitted fluorescence in 41 eyes. ICGA examination showed that CNV-like hyperfluorescence spots in 18 eyes, suspicious hyperfluorescence spots in late stage in 20 eyes, and choroidal high permeability in 11 eyes, respectively; and 18 CNV eyes were confirmed to be type 1 CNV by OCT. To compare the detection of CNV by OCTA and fundus angiography. ResultsOf the 49 eyes with FIPED, OCTA detected 36 eyes (73.5%) of type 1 CNV, and full or partial strong reflex signals were seen in FIPED; 13 eyes (26.5%) were not associated with CNV, and some strong reflection signals were found in FIPED in 9 eyes, 4 eyes with weak reflection signal. The FFA was examined for 1, 7 eyes of the classic and occult CNV, which confirmed to be type 1 CNV by OCTA. Among the 18 eyes with CNV which detected by ICGA, OCTA also found type 1 CNV. Among the 20 eyes with ICGA’s late suspicious strong fluorescent spots, OCTA showed 17 eyes of type 1 CNV; in 11 eyes with high choroidal permeability, OCTA showed type 1 CNV in 1 eye. Among the 36 eyes with CNV which detected by OCT, there were SRD in 32 eyes, no SRD in 2 eyes and retinal interlamellar cavities in 2 eyes. ConclusionOCTA can detect 73.5% of FIPED eyes with CNV. Compared with traditional fundus angiography, OCTA has a higher detection rate of CNV under FIPED. The FIPED of the internal strong reflection signal has a certain diagnostic value for the type 1 CNV.

关键词: 扁平不规则视网膜色素上皮脱离; 脉络膜新生血管化/诊断; 体层摄影术,光学相干; 荧光素血管造影术; 吲哚花青绿/诊断应用

Key words: Flat irregular pigment epithelial detachments; Choroidal Neovascularization/diagnosis; Tomography, optical coherence; Fluorescein angiography; Indocyanine green/diagnostic use

引用本文: 姜媛, 高鸽, 李佩君, 郑波. 扁平不规则视网膜色素上皮脱离患眼脉络膜新生血管的光相干断层扫描血管成像观察. 中华眼底病杂志, 2019, 35(1): 45-49. doi: 10.3760/cma.j.issn.1005-1015.2019.01.010 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Hage R, Mrejen S, Krivosic V, et al. Flat irregular retinal pigment epithelium detachments in chronic central serous chorioretinopathy and choroidal neovascularization[J]. Am J Ophthalmol, 2015, 159(5): 890-903. DOI: 10.1016/j.ajo.2015.02.002.
2. Mukai R, Sato T, Kishi S. A hyporeflective space between hyperreflective materials in pigment epithelial detachment and Bruch’s membrane in neovascular age-related macular degeneration[J]. BMC Ophthalmol, 2014, 14: 159. DOI: 10.1186/1471-2415-14-159.
3. Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2161-2162. DOI: 10.1097/IAE.0000000000000881.
4. Bousquet E, Bonnin S, Mrejen S, et al. Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous chorioretinopathy[J]. Retina, 2018, 38(3): 629-638. DOI: 10.1097/IAE.0000000000001580.
5. Pauleikhoff D. Neovascular age-related macular degeneration: natural history and treatment outcomes[J]. Retina, 2005, 25(8): 1065-1084. DOI: 10.1097/00006982-200512000-00016.
6. Guyer DR, Yannuzzi LA, Slakter JS, et al. Classification of choroidal neovascularization by digital indocyanine green videoangiography[J]. Ophthalmology, 1996, 103(12): 2054-2060. DOI: 10.1016/S0161-6420(96)30388-6.
7. Demirel S, Yanık Ö, Nalcı H, et al. The use of optical coherence tomography angiography in pachychoroid spectrum diseases: a concurrent comparison with dye angiography[J]. Graefe’s Arch Clin Exp Ophthalmol, 2017, 255(12): 2317-2324. DOI: 10.1007/s00417-017-3793-8.
8. Gass JD. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes[J]. Am J Ophthalmol, 1994, 118(3): 285-298. DOI: 10.1016/S0002-9394(14)72951-4.
9. Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2015, 160(4): 739-748. DOI: 10.1016/j.ajo.2015.06.030.
10. El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218. DOI: 10.1097/IAE.0000000000000773.
11. Tan ACS, Simhaee D, Balaratnasingam C, et al. A perspective on the nature and frequency of pigment epithelial detachments[J]. Am J Ophthalmol, 2016, 172: 13-27. DOI: 10.1016/j.ajo.2016.09.004.
12. Song IS, Shin YU, Lee BR. Time-periodic characteristics in the morphology of idiopathic central serous chorioretinopathy evaluated by volume scan using spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2012, 154(2): 366-375. DOI: 10.1016/j.ajo.2012.02.031.
13. de Carlo TE, Rosenblatt A, Goldstein M, et al. Vascularization of irregular retinal pigment epithelial detachments in chronic central serous chorioretinopathy evaluated with OCT angiography[J]. Ophthalmic Surg Lasers Imaging Retina, 2016, 47(2): 128-133. DOI: 10.3928/23258160-20160126-05.
14. Hee MR, Baumal CR, Puliafito CA, et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization[J]. Ophthalmology, 1996, 103(8): 1260-1270. DOI: 10.1016/S0161-6420(96)30512-5.
15. Tan ACS, Freund KB, Balaratnasingam C, et al. Imaging of pigment epithelial detachments with optical coherence tomography angiography[J]. Retina, 2018, 38(9): 1759-1769. DOI: 10.1097/IAE.0000000000002016.
16. Ojima Y, Hangai M, Sakamoto A, et al. Improved visualization of polypoidal choroidal vasculopathy lesions using spectral-domain optical coherence tomography[J]. Retina, 2009, 29(1): 52-59. DOI: 10.1097/IAE.0b013e3181884fbf.
17. Schmidt-Erfurth U, Schlötzer-Schrehard U, Cursiefen C, et al. Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor[J]. Invest Ophthalmol Vis Sci, 2003, 44(10): 4473-4480. DOI: 10.1167/iovs.02-1115.
18. Yang L, Jonas JB, Wei W. Optical coherence tomography-assisted enhanced depth imaging of central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4659-4665. DOI: 10.1167/iovs.12-10991.
19. Dansingani KK, Balaratnasingam C, Klufas MA, et al. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease[J]. Am J Ophthalmol, 2015, 160(6): 1243-1254. DOI: 10.1016/j.ajo.2015.08.028.
20. Gołębiewska J, Brydak-Godowska J, Moneta-Wielgoś J, et al. Correlation between Choroidal Neovascularization Shown by OCT Angiography and Choroidal Thickness in Patients with Chronic Central Serous Chorioretinopathy[J/OL]. J Ophthalmol, 2017, 2017:3048013[2017-10-04]. https://doi.org/10.1155/2017/3048013.DOI: 10.1155/2017/3048013.