中华眼底病杂志

中华眼底病杂志

原发性开角型青光眼高危人群视网膜光阈值波动与视网膜神经纤维层和神经节细胞复合体厚度改变的时间关系

查看全文

目的观察视网膜光阈值波动(LTF)与视网膜神经纤维层(RNFL)、神经节细胞复合体(GCC)厚度在原发性开角型青光眼(POAG)高危人群中发生改变的时间关系和诊断准确率及敏感度。 方法纵向队列分析。2009年12月至2017年12月在昆明医科大学第一附属医院眼科就诊且具有POAG高危因素者319例(319只眼)以及正常健康者50名(50只眼)(对照组)纳入研究。高危因素者每6个月、对照受检者每12个月行视野、OCT检查。POAG确诊标准:OCT检查出现垂直C/D≥0.6;视野检查出现早期缺损表现,依据青光眼视野损伤GSS2定量分级标准,中心视野的平均缺损及模式标准差超过临界区为视野早期缺损;检查结果具有连续可重复性。以未出现视野缺损和C/D≥0.6,符合可靠性指标并去除学习效应的第1次视野、OCT检查结果作为基线;当第1次达到POAG确诊标准时记录为转点,同时纳入POAG早期组并结束随访。末次随访后取检查数据以年为单位进行分段统计。观察POAG早期组、对照组受检者随访期间LTF及RNFL、GCC厚度变化规律,比较各时间段丢失速率和变化率,评估其随时间的变化趋势;根据受试者工作特征曲线下面积(AUC)比较各时间段相关因素对POAG的预测价值,以及敏感性。 结果319例319只眼中,进入转点67例67只眼(POAG早期组),其中男性37例、女性30例。POAG早期组、对照组受检者平均随访时间分别为6.6、6.4年。转点时,POAG早期组患者平均RNFL、GCC厚度分别为(79.05±8.09)、(71.58±8.41)μm,平均LTF为(−6.05±7.02) dB;对照组受检者平均RNFL、GCC厚度分别为(93.49±6.24)、(79.72±6.32)μm,平均LTF为(−0.31±0.58) dB。两组受检者平均LTF以及RNFL、GCC厚度间比较,差异均有统计学意义(t=−5.97、−10.42、−5.60,P<0.001)。POAG早期组患者RNFL、GCC厚度以及LTF的AUC随时间推移增大,敏感性逐渐增高。转点前5年至转点,RNFL厚度的AUC分别为0.15、0.65、0.71、0.77、0.85、0.92,敏感性分别为20%、56%、61%、65%、70%、76%;GCC厚度的AUC分别为0.12、0.53、0.69、0.74、0.82、0.90,敏感性分别为14%、53%、69%、74%、82%、90%;LTF的AUC分别为0.10、0.21、0.33、0.75、0.86、0.91,敏感性分别为7%、17%、44%、65%、78%、87%。 结论POAG出现结构性损伤的最早时间为确诊前4年,同期RNFL诊断敏感性优于GCC、LTF;POAG出现视功能损伤最早时间在确诊前2年,同期LTF诊断敏感性度优于RNFL、GCC。

ObjectiveTo investigate the time relationship of the change, and diagnostic accuracy and sensitivity between retinal light threshold fluctuations (LTF) and retinal nerve fiber layer (RNFL) and ganglion cell complex(GCC) thickness on high-risk primary open-angle glaucoma (POAG). MethodsTotally 319 patients (319 eyes) with high-risk in POAG from the First Affiliated Hospital of Kunming Medical Universityand during December 2009 and December 2017, 50 healthy individuals (50 eyes) as control were collected in this longitudinal cohort study. Visual field and OCT were reviewed every 6 months on the high-risk group and every 12 months on the control group. High-risk groups inclusion criteria: vertical C/D≥0.6; early visual field defect (according to glaucoma visual field damage GSS2 quantitative grading standards, mean deviation and pattern standard deviation of central field exceeds the border as an early visual field defect); continuous repeatable results. The first field and OCT results in the absence of visual field defects and C/D≥0.6, which were conformed reliability indicators and removed learning effects as a baseline. When patients achieve POAG diagnosis criteria first time which was recorded as a turning point. And they were divided into early group meanwhile were ended of follow-up. After the last follow-up, the inspection data was segmented counted in yearly interval. The changes of LTF, thickness of RNFL and GCC during the follow-up period in the early POAG group and the control group were observed. The loss rate and change rate in each period were compared for the assessment of their trends with time. Followed by calculation of the area under receiver operating curves (AUC) to compare the predicted value of POAG and the sensitivity at 95% specificity in each period. ResultsAfter last follow-up, totally 67 patients 67 eyes (early POAG group, 37 males and 30 females) were entered the turning point. The mean follow-up of the early POAG group and the control group were 6.6 and 6.4 years. The average RNFL thickness was 79.05±8.09 μm, GCC thickness was 71.58±8.41 μm, LTF was −6.05±7.02 dB in early POAG group. The average RNFL thickness was 93.49±6.24 μm, GCC thickness was 79.72±6.32 μm, LTF was −0.31±0.58 dB in the control group. The differences of LTF and the thickness of RNFL and GCC were statistically significant (t=−5.97, −10.42, −5.60; P<0.001). The AUC of RNFL, GCC thickness and LTF increased with time in the early POAG group. The sensitivity was gradually increased at 95% specificity: 5th year before to at turning point, RNFL thickness AUC was 0.15, 0.65, 0.71, 0.77, 0.85, 0.92, and sensitivity was 20%, 56%, 61%, 65%, 70%, 76%, respectively; GCC thickness AUC was 0.12, 0.53, 0.69, 0.74, 0.82, 0.90, and sensitivity was 14%, 53%, 69%, 74%, 82%, 90%, respectively; the AUC of LTF was 0.10, 0.21, 0.33, 0.75, 0.86, 0.91, and sensitivity was 7%, 17%, 44%, 65%, 78%, 87%, respectively. ConclusionsThe earliest time of structural functional damage of POAG is at the 4th year before confirmed, simultaneous RNFL diagnosis accuracy and sensitivity are better than GCC and LTF. The earliest time of visual functional damage of POAG is at the 2th year before confirmed, simultaneous LTF diagnosis accuracy and sensitivity are better than RNFL and GCC.

关键词: 青光眼, 开角型/诊断; 视网膜光阈值波动; 视网膜神经纤维层厚度; 视网膜神经节细胞复合体厚度; 时间关系

Key words: Glaucoma, open-angle/diagnosis; Retinal light threshold fluctuation; Retinal nerve fiber layer thickness; Retinal ganglion cell complex thickness; Time relationship

引用本文: 陈苗苗, 蔡宁, 马嘉, 袁援生. 原发性开角型青光眼高危人群视网膜光阈值波动与视网膜神经纤维层和神经节细胞复合体厚度改变的时间关系. 中华眼底病杂志, 2019, 35(1): 58-64. doi: 10.3760/cma.j.issn.1005-1015.2019.01.013 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Flammer J, Drance SM, Augustiny L, et al. Quantification of glaucomatous visual field defects with automated perimetry[J]. Invest Ophthalmol Vis Sci, 1985, 26(7): 176-181.
2. 李美玉. 原发性开角型青光眼[M]//李凤鸣, 谢立信. 中华眼科学. 2版. 北京: 人民卫生出版社, 2014: 1740.Li MY. Primary open-angle glaucoma[M]//Li FM, Xie LX. Chinese Ophthalmology. 2nd ed. Beijing: People’s Medical Publishing House, 2014: 1740.
3. 中华医学会眼科学分会青光眼学组, 中华医学会中华眼科杂志编辑委员会. 我国原发性青光眼诊断和治疗专家共识[J]. 中华眼科杂志, 2008, 44(9): 862-863. DOI: 10.3321/j.issn:0412-4081.2008.09.022.Glaucoma Group, Ophthalmology Branch of Chinese Medical Association; Editorial Board of Chinese Journal of Ophthalmology, Chinese Medical Association. Expert consensus on the diagnosis and treatment of primary glaucoma in China[J]. Chin J Ophthalmol, 2008, 44(9): 862-863. DOI: 10.3321/j.issn:0412-4081.2008.09.022.
4. 孔祥梅, 吴彦婵, 陈君毅, 等. 眼底杯盘比>0.3人群原发性开角型青光眼危险因素分析[J]. 中国眼耳鼻喉科杂志, 2014, 14(5): 278-282. DOI: 10.14166/j.issn.1671-2420.2014.05.031.Kong XM, Wu YC, Chen JY, et al. Risk factors of primary open-angle glaucoma in subjects with cup-to-disc ratio larger than 0.3[J]. Chin J Ophthalmol and Otorhinolaryngol, 2014, 14(5): 278-282. DOI: 10.14166/j.issn.1671-2420.2014.05.031.
5. 李美玉. 视乳头的临床检查[M]//李凤鸣, 李美玉. 眼科全书. 北京: 人民卫生出版社, 1996: 1799-1806.Li MY. Clinical examination of the optic papilla[M]//Li FM, Li MY. Ophthalmology book. Beijing: People’s Medical Publishing House, 1996: 1799-1806.
6. 王大博, 王竫华, 纪淑兴. 可疑青光眼杯盘比值与静态阈值视野改变的观察[J]. 中国实用眼科杂志, 2002, 20(2): 132-133. DOI: 10.3760/cma.j.issn.1006-4443.2002.02.018.Wang DB, Wang YH, Ji SX. Observation on the change of suspicious glaucoma cup-to-disc ratio and static threshold visual field[J]. Chin J Pract Ophthalmol, 2002, 20(2): 132-133. DOI: 10.3760/cma.j.issn.1006-4443.2002.02.018.
7. Brusini P, Filacorda S. Enhanced Glaucoma Staging System (GSS2) for classifying functional damage in glaucoma[J]. J Glaucoma, 2006, 15(1): 40-46. DOI: 10.1097/01.ijg.0000195932.48288.97.
8. 汪云云, 陈松灿. 基于AUC的分类器评价和设计综述[J]. 模式识别与人工智能, 2011, 24(1): 64-71. DOI: 10.16451/j.cnki.issn1003-6059.Wang YY, Chen SC. A review of classifier evaluation and design based on AUC[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 64-71. DOI: 10.16451/j.cnki.issn1003-6059.
9. Medeiros FA, Sample PA, Zangwill LM, et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma[J]. Invest Ophthalmol Vis Sci, 2006, 47(6): 2520-2527. DOI: 10.1167/iovs.05-1441.
10. Chen HY, Chang YC. Meta-analysis of stratus OCT glaucoma diagnostic accuracy[J]. Optom Vis Sci, 2014, 91(9): 1129-1139. DOI: 10.1097/OPX.0000000000000331.
11. Elbendary AM, Abd El-Latef MH, Elsorogy HI, et al. Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma[J]. Can J Ophthalmol, 2017, 52(4): 355-360. DOI: 10.1016/j.jcjo.2017.01.003.
12. Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point[J]. Br J Ophthalmol, 2012, 96(2): 47-52. DOI: 10.1136/bjo.2010.196907.
13. Miki A, Medeiros FA, Weinreb RN, et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes[J]. Ophthalmology, 2014, 121: 1350-1358. DOI: 10.1016/j.ophtha.2014.01.017.
14. Iverson SM, Feuer WJ, Shi W, et al. Frequency of abnormal retinal nerve fibre layer and ganglion cell layer SDOCT scans in healthy eyes and glaucoma suspects in a prospective longitudinal study[J]. Br J Ophthalmol, 2014, 98(7): 920-925. DOI: 10.1136/bjophthalmol-2013-303877.
15. Na JH, Sung KR, Baek SH, et al. Rates and patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes[J]. J Glaucoma, 2015, 24(4): 278-285. DOI: 10.1097/IJG.0000000000000046.
16. Kostanyan T, Sung KR, Schuman JS, et al. Glaucoma structural and functional progression in American and Korean cohorts[J]. Ophthalmology, 2016, 123(4): 783-788. DOI: 10.1016/j.ophtha.2015.12.010.
17. Lin PW, Chan HW, Lin JP, et al. Analysis of peripapillary retinal nerve fiber layer and inner macular layers by spectral-domain optical coherence tomography for detection of early glaucoma[J]. Int J Ophthalmol, 2018, 11(7): 1163-1172. DOI: 10.18240/ijo.2018.07.15.
18. Kaushik, S, Kataria P, Jain V, et al. Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis[J]. Indian J Ophthalmol, 2018, 66(4): 511-516. DOI: 10.4103/ijo.IJO-1039-17.
19. Xu, X, Xiao H, Guo X, et al. Diagnostic ability of macular ganglion cell-inner plexiform layer thickness in glaucoma suspects[J]. Medicine (Baltimore), 2017, 96(51): 9182. DOI: 10.1097/MD.0000000000009182.
20. Lee WJ, Na KI, Kim YK, et al. Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma[J]. J Glaucoma, 2017, 26(6): 577-585. DOI: 10.1097/IJG.0000000000000662.
21. Kim HJ, Park KH, Kim YK, et al. Evaluation of layer-by-layer segmented ganglion cell complex thickness for detecting early glaucoma according to different macular grids[J]. J Glaucoma, 2017, 26(8): 712-717. DOI: 10.1097/IJG.0000000000000709.