中华眼底病杂志

中华眼底病杂志

光相干断层扫描血管成像在遗传性视网膜脉络膜变性疾病中的应用研究现状

查看全文

作为一种快速、无创、可量化的血管成像新技术,OCT血管成像(OCTA)尤其适合应用于视网膜色素变性、Best卵黄样黄斑营养不良、成人型卵黄样黄斑营养不良、蜂巢状视网膜营养不良、无脉络膜症及Stargardt病等遗传性视网膜脉络膜变性疾病患者的长期随访。在随访过程中,临床医生可以从血管成像中发现解释疾病发展的细微征象,对血流密度进行定量化描述,及时发现脉络膜新生血管并尽早治疗,对这些疾病的病因探索、病程监控有着重要的临床意义。随着该类疾病更多治疗方式的开展,OCTA相关参数还可以作为评判和比较不同治疗效果的指标。未来更多的OCTA量化指标将应用于评价遗传性视网膜脉络膜变性疾病的病程变化,为临床的早期诊断和治疗提供宝贵依据。

OCT angiography (OCTA) is a fast, noninvasive and quantifiable new technique, which is especially suitable for long-term follow-up in patients with hereditary retinochoroidal degeneration, such as retinitis pigmentosa, Best vitelliform macular dystrophy, adult onset foveomacular vitelliform dystrophy, doyne honeycomb retinal dystrophy, choroideremia and Stargardt disease. During the follow-up, clinicians can find the subtle signs that explain disease development from the blood flow imaging, quantitatively describe the vascular density, timely detect and treat choroidal neovascularization. It is significant to explore the etiology and monitor the course of these diseases. With the development of more treatments for these diseases, OCTA parameters can also be used as indicators to evaluate and compare different therapeutic effects. In the future, more quantitative indicators of OCTA will be applied to evaluate the course of hereditary retinochoroidal degeneration, and provide valuable basis for early diagnosis and treatment.

关键词: 体层摄影术,光学相干; 视网膜疾病/诊断; 脉络膜疾病/诊断; 眼疾病,遗传性; 综述

Key words: Tomography, optical coherence; Retinal diseases/diagnosis; Choroid diseases/ diagnosis; Eye Diseases, Hereditary; Review

引用本文: 王霄娜, 彭晓燕. 光相干断层扫描血管成像在遗传性视网膜脉络膜变性疾病中的应用研究现状. 中华眼底病杂志, 2019, 35(1): 86-90. doi: 10.3760/cma.j.issn.1005-1015.2019.01.021 复制

1. Bessant DA, Ali RR, Bhattacharya SS. Molecular genetics and prospects for therapy of the inherited retinal dystrophies[J]. Curr Opin Genet Dev, 2001, 11(3): 307-316. DOI: 10.1016/S0959-437X(00)00195-7.
2. Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(2): a017111[2014-10-16]. http://perspectivesinmedicine.cshlp.org/cgi/pmidlookup?view=long&pmid=25324231. DOI: 10.1101/cshperspect.a017111.
3. Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proc Natl Acad Sci USA, 2015, 112(18): 2395-2402. DOI: 10.1073/pnas.1500185112.
4. 李凤飞. 眼底荧光血管造影的不良反应及应对措施[J]. 中国实用眼科杂志, 2006, 24(6): 636-637. DOI: 10.3969/j.issn.1672-5085.2012.20.162.Li FF. The adverse reaction and countermeasures of fundus fluorescein angiography[J]. Chin J Pract Ophthalmol, 2006, 24(6): 636-637. DOI: 10.3969/j.issn.1672-5085.2012.20.162.
5. Phasukkijwatana N, Tan ACS, Chen X, et al. Optical coherence tomography angiography of type 3 neovascularisation in age-related macular degeneration after antiangiogenic therapy[J]. Br J Ophthalmol, 2017, 101(5): 597-602. DOI: 10.1136/bjophthalmol-2016-308815.
6. Moult E, Choi W, Waheed NK, et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(6): 496-505. DOI: 10.3928/23258160-20141118-03.
7. Nobre CJ, Keane PA, Sim DA, et al. Systematic evaluation of optical coherence tomography angiography in retinal vein occlusion[J]. Am J Ophthalmol, 2016, 163: 93-107. DOI: 10.1016/j.ajo.2015.11.025.
8. Matsunaga DR, Yi JJ, De Koo LO, et al. Optical coherence tomography angiography of diabetic retinopathy in human subjects[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(8): 796-805. DOI: 10.3928/23258160-20150909-03.
9. Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Surv Ophthalmol, 2017, 62(6): 838-866. DOI: 10.1016/j.survophthal.2017.05.006.
10. Rezaei KA, Zhang Q, Chen CL, et al. Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(7): 1287-1295. DOI: 10.1007/s00417-017-3633-x.
11. Falsini B, Anselmi GM, Marangoni D, et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1064-1069. DOI: 10.1167/iovs.10-5964.
12. Zhang Y, Harrison JM, Nateras OS, et al. Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI[J]. Doc Ophthalmol, 2013, 126(3): 187-197. DOI: 10.1007/s10633-013-9374-1.
13. Iacono P, Parodi MB, La SC, et al. Dynamic and static vessel analysis in patients with retinitis pigmentosa: a pilot study of vascular diameters and functionality[J]. Retina, 2017, 37(5): 998-1002. DOI: 10.1097/IAE.0000000000001301.
14. Berson EL, Rosner B, Sandberg MA, et al. Ω-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A[J]. Arch Ophthalmol, 2012, 130(6): 707-711. DOI: 10.1001/archophthalmol.2011.2580.
15. Liang SY, Lee LR. Retinitis pigmentosa associated with hypomagnesaemia[J]. Clin Exp Ophthalmol, 2010, 38(6): 645-647. DOI: 10.1111/j.1442-9071.2010.02314.x.
16. Nakazawa M, Ohguro H, Takeuchi K, et al. Effect of nilvadipine on central visual field in retinitis pigmentosa: a 30-month clinical trial[J]. Ophthalmologica, 2011, 225(2): 120-126. DOI: 10.1159/000320500.
17. Sugahara M, Miyata M, Ishihara K, et al. Optical coherence tomography angiography to estimate retinal blood flow in eyes with retinitis pigmentosa[J/OL]. Sci Rep, 2017, 7: 46396[2017-04-13]. http://dx.doi.org/10.1038/srep46396. DOI: 10.1038/srep46396.
18. Chung MM, Oh KT, Streb LM, et al. Visual outcome following subretinal hemorrhage in Best disease[J]. Retina, 2001, 21(6): 575-580. DOI: 10.1097/00006982-200112000-00003.
19. Strauss O. The retinal pigment epithelium in visual function[J]. Physiol Rev, 2005, 85(3): 845-881. DOI: 10.1152/physrev.00021.2004.
20. Shahzad R, Siddiqui MA. Choroidal neovascularization secondary to Best vitelliform macular dystrophy detected by optical coherence tomography angiography[J]. J AAPOS, 2017, 21(1): 68-70. DOI: 10.1016/j.jaapos.2016.08.018.
21. Guduru A, Gupta A, Tyagi M, et al. Optical coherence tomography angiography characterisation of Best disease and associated choroidal neovascularisation[J]. Br J Ophthalmol, 2018, 102(4): 444-447. DOI: 10.1136/bjophthalmol-2017-310586.
22. Lupidi M, Coscas G, Cagini C, et al. Optical coherence tomography angiography of a choroidal neovascularization in adult onset foveomacular vitelliform dystrophy: pearls and pitfalls[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 7638-7345. DOI: 10.1167/iovs.15-17603.
23. Toto L, Borrelli E, Mastropasqua R, et al. Adult-onset foveomacular vitelliform dystrophy evaluated by means of optical coherence tomography angiography: a comparison with dry age-related macular degeneration and healthy eyes[J]. Retina, 2018, 38(4): 731-738. DOI: 10.1097/IAE.0000000000001615.
24. Arnold JJ, Sarks JP, Killingsworth MC, et al. Adult vitelliform macular degeneration: a clinicopathological study[J]. Eye, 2003, 17(6): 717-726. DOI: 10.1038/sj.eye.6700460.
25. Coscas F, Puche N, Coscas G, et al. Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 64-69. DOI: 10.1167/iovs.13-12931.
26. Stone EM, Lotery AJ, Munier FL, et al. A single EFEMP1 mutation associated with both malattia leventineseand doyne honeycomb retinal dystrophy[J]. Nat Genet, 1999, 22(2): 199-202. DOI: 10.1038/9722.
27. Timpl R, Sasaki T, Kostka G, et al. Fibulins: a versatile family of extracellular matrix proteins[J]. Nat Rev Mol Cell Biol, 2003, 4(6): 479-489. DOI: 10.1038/nrm1130.
28. Klenotic PA, Munier FL, Marmorstein LY, et al. Tissue inhibitor of metalloproteinases-3(TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1(EFEMP1). Implications for macular degenerations[J]. J Biol Chem, 2014, 279(29): 30469-30473. DOI: 10.1074/jbc.M403026200.
29. Sohn EH, Patel PJ, Maclaren RE, et al. Responsiveness of choroidal neovascular membranes in patients with R345W mutation in fibulin 3 (doyne honeycomb retinal dystrophy) to anti-vascular endothelial growth factor therapy[J]. Arch Ophthalmol, 2011, 129(12): 1626-1628. DOI: 10.1001/archophthalmol.2011.338.
30. Serra R, Coscas F, Messaoudi N, et al. Choroidal neovascularization in malattia leventinese diagnosed using optical coherence tomography angiography[J]. Am J Ophthalmol, 2017, 176: 108-117. DOI: 10.1016/j.ajo.2016.12.027.
31. Kostka G, Giltay R, Bloch W, et al. Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice[J]. Mol Cell Biol, 2001, 21(20): 7025-7034. DOI: 10.1128/MCB.21.20.7025-7034.2001.
32. Marmorstein L. Association of EFEMP1 with malattia leventinese and age-related macular degeneration: a mini-review[J]. Ophthalmic Genet, 2004, 25(3): 219-226. DOI: 10.1080/13816810490498305.
33. Mcculloch C, Mcculloch RJ. A hereditary and clinical study of choroideremia[J]. Trans Am Acad Ophthalmol Otolaryngol, 1948, 52: 160-190.
34. Kim DY, Fingler J, Zawadzki RJ, et al. Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 85-92. DOI: 10.1167/iovs.11-8249.
35. van den Hurk JA, Hendriks W, van de Pol DJ, et al. Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline[J]. Hum Molr Genet, 1997, 6(6): 851-858. DOI: 10.1093/hmg/6.6.851.
36. Ghosh M, Mcculloch C, Parker JA. Pathological study in a female carrier of choroideremia[J]. Can J Ophthalmol, 1988, 23(4): 181-186.
37. Krock BL, Bilotta J, Perkins BD. Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia[J]. Proc Natl Acad Sci USA, 2007, 104(11): 4600-4605. DOI: 10.1073/pnas.0605818104.
38. Macdonald IM, Russell L, Chan CC. Choroideremia: new findings from ocular pathology and review of recent literature[J]. Surv Ophthalmol, 2009, 54(3): 401-407. DOI: 10.1016/j.survophthal.2009.02.008.
39. Shi W, van den Hurk JA, Alamo-Bethencourt V, et al. Choroideremia gene product affects trophoblast development and vascularization in mouse extra-embryonic tissues[J]. Dev Biol, 2004, 272(1): 53-65. DOI: 10.1016/j.ydbio.2004.04.016.
40. Kato M, Maruko I, Koizumi H, et al. Case report: optical coherence tomography angiography and fundus autofluorescence in the eyes with choroideremia[J/OL]. BMJ Case Rep, 2017[2017-01-06]. http://casereports.bmj.com/cgi/pmidlookup?view=long&pmid=28062428. DOI: 10.1136/bcr-2016-217682.
41. Gao SS, Patel RC, Jain N, et al. Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography[J]. Biomed Opt Express, 2016, 8(1): 48-56. DOI: 10.1364/BOE.8.000048.
42. Maclaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014, 383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0.
43. Giani A, Pellegrini M, Carini E, et al. The dark atrophy with indocyanine green angiography in Stargardt disease dark atrophy in Stargardt disease[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3999-4004. DOI: 10.1167/iovs.11-9258.
44. Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease[J]. Ophthalmology, 2003, 110(6): 1151-1158. DOI: 10.1016/S0161-6420(03)00333-6.
45. Mastropasqua R, Toto L, Borrelli E, et al. Optical coherence tomography angiography findings in Stargardt disease[J/OL]. PLoS One, 2017, 12(2): 0170343[2017-02-02]. http://dx.plos.org/10.1371/journal.pone.0170343. DOI: 10.1371/journal.pone.0170343.
46. Parodi MB, Cicinelli MV, Rabiolo A, et al. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography[J]. Br J Ophthalmol, 2017, 101(6): 780-785. DOI: 10.1136/bjophthalmol-2016-308869.
47. Pellegrini M, Acquistapace A, Oldani M, et al. Dark atrophy: an optical coherence tomography angiography study[J]. Ophthalmology, 2016, 123(9): 1879-1886. DOI: 10.1016/j.ophtha.2016.05.041.
48. Adhi M, Read SP, Ferrara D, et al. Morphology and vascular layers of the choroid in stargardt disease analyzed using spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2015, 160(6): 1276-1284. DOI: 10.1016/j.ajo.2015.08.025.
49. Lu LJ, Ji L, Adelman RA. Novel therapeutics for Stargardt disease[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(6): 1057-1062. DOI: 10.1007/s00417-017-3619-8.
50. 魏文斌, 周楠. 光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景[J]. 中华眼底病杂志, 2018, 34(4): 317-322. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.002.Wei WB, Zhou N. The shortcoming and developing perspective of optical coherence tomography angiography in clinical diagnosis and treatment of ocular fundus diseases[J]. Chin J Ocul Fundus Dis, 2018, 34(4): 317-322. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.002.
51. 黎晓新, 石璇. 认识光相干断层扫描血管成像技术特色, 提升光相干断层扫描血管成像技术临床应用水平[J]. 中华眼底病杂志, 2017, 33(1): 3-6. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.002.Li XX, Shi X. Clinical applications of optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2017, 33(1): 3-6. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.002.
52. 王敏. 利用光相干断层扫描血管成像技术优势, 提升视网膜脉络膜血管疾病认知水平[J]. 中华眼底病杂志, 2016, 32(4): 353-356. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.003.Wang M. Better understanding retinal and choroidal vascular diseases with optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2016, 32(4): 353-356. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.003.