中华眼底病杂志

中华眼底病杂志

新型眼底影像检查技术在糖尿病视网膜病变诊断中的应用

查看全文

糖尿病视网膜病变(DR)是导致糖尿病患者视力损伤和失明的主要原因,寻求更简便、安全、无创、高效的诊查及监控方法尤为重要。近年推出的多种新型眼底影像检查技术在DR的早期诊断、指导治疗和随访监测中显示出了独特的优势。广角激光扫描眼底成像系统具有免散瞳、快速、无创、成像范围广等特点,包括广角眼底照相、超广角FFA、广角FAF等多种激光扫描模式,可通过不同波长成像定位病变位置。多光谱眼底分层成像系统可识别DR的微动脉瘤、视网膜出血、渗出等,因其无创、方便、快捷,已逐渐用于DR的筛查、诊断和随访。OCT血管成像技术可对黄斑中心凹无血管区面积、黄斑血流密度等进行定量检测,为临床提供多元化的DR诊断依据和评估手段。这些新型眼底影像检查技术的不断完善将对建立个性化的DR评估体系提供重要的技术支持。

Diabetic retinopathy (DR) is one of the most common causes of visual impairment and blindness in diabetic patients. It is particularly important to set up simpler, safer, non-invasive and highly effective methods for diagnosis as well as monitoring DR. A variety of new fundus imaging techniques show great advantages in early diagnosis, treatment and monitoring of DR in recent years. The main characteristics of wide-field scanning laser imaging system is achieving a large range of retinal image in a single photograph and without mydriasis. It provides several options for color images, FFA and FAF, which satisfy to detect the retina, choroid and vascular structure. Multi spectral fundus imaging system is suitable for DR screening, because it is able to recognize the typical characteristics of DR, such as microaneurysms, hemorrhage and exudation, and is non-invasive and convenient. OCT angiography is a quantitative examination that provides foveal avascular zone area, macular blood flow density, which provides strong evidence for DR diagnosis. The improvement of these new techniques will help us to build up a personalized evaluation system of DR.

关键词: 糖尿病视网膜病变/诊断; 检眼镜检查; 显微镜检查,共焦; 体层摄影术,光学相干; 彩色眼底照相

Key words: Diabetic retinopathy/diagnosis; Ophthalmoscopy; Microscopy, confocal; Tomography, optical coherence; Color fundus photography

引用本文: 李晓莉, 孟倩丽, 谢洁, 陈湘婷, 黄天. 新型眼底影像检查技术在糖尿病视网膜病变诊断中的应用. 中华眼底病杂志, 2019, 35(1): 90-94. doi: 10.3760/cma.j.issn.1005-1015.2019.01.022 复制

1. Witmer MT, Kiss S. Wide-field imaging of the retina[J]. Surv Ophthalmol, 2013, 58(2): 143-154. DOI: 10.1016/j.survophthal.2012.07.003.
2. Silva PS , El-Rami H , Barham R , et al. Hemorrhage and/or microaneurysm severity and count in ultrawide field images and early treatment diabetic retinopathy study photography[J]. Ophthalmology, 2017, 124(7): 970-976. DOI: 10.1016/j.ophtha.2017.02.012.
3. Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy[J]. Clin Ophthalmol, 2015, 9: 527-531. DOI: 10.2147/OPTH.S79448.
4. Talks SJ, Manjunath V, Steel DH, et al. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis[J]. Br J Ophthalmol, 2015, 99(12): 1606-1609. DOI: 10.1136/bjophthalmol-2015-306719.
5. Manjunath V, Papastavrou V, Steel DH. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening[J]. Eye (Lond), 2015, 29(3): 416-423. DOI: 10.1038/eye.2014.320.
6. Rabiolo A, Parravano M, Querques L, et al. Ultra-wide-field fluorescein angiography in diabetic retinpathy: a narrative review[J]. Clin Ophthalmol, 2017, 11: 803-807. DOI: 10.1016/j.ophtha.2015.07.034.
7. Friberg TR, Gupta A, Yu J, et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems[J]. Ophthalmic Surg Lasers Imaging, 2008, 39(4): 304-311. DOI: 10.3928/15428877-20080701-06.
8. Wessel MM, Aaker GD, Parlitsis G, et al. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy[J]. Retina, 2012, 32(4): 785-791. DOI: 10.1097/IAE.0b013e3182278b64.
9. Zhang J, Yu Z, Liu L. Multimodality imaging in diagnosing polypoidal choroidal vasculopathy[J]. Optom Vis Sci, 2015, 92(1): 21-26. DOI: 10.1097/OPX.0000000000000440.
10. Everdell NL, Styles IB, Calcagni A, et al. Multispectral imaging of the ocular fundus using light emitting diode illumination[J]. Rev Sci Instrum, 2010, 81(9): 093706. DOI: 10.1063/1.3478001.
11. Calcagni A, Gibson JM, Styles IB, et al. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging[J]. Eye, 2011, 25(12): 1562-1569. DOI: 10.1038/eye.2011.202.
12. Zimmer C, Kahn D, Clayton R, et al. Innovation in diagnostic retinal imaging: multispectral imaging[J]. Retina Today, 2014, 10: 94-99.
13. Li S, Huang L, Bai Y, et al. In vivo study of retinal transmission function in different sections of the choroidal structure using multispectral imaging[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3731-3742. DOI: 10.1167/iovs.14-15783.
14. Li XX. Multispectral fundus imaging for screening and diagnosis[M]. Beijing: Beijing Science & Technology Press, 2014: 32-37.
15. Xia JT. Evaluation of the application value of LED multi-spectral imaging system in diabetic retinopathy[D]. Lanzhou University, 2016.
16. Li L, Zhang P, Liu H, et al. Evaluation of multspectral imaging in diagnosing diabetic retinopathy[J/OL]. Retina, 2018, 2018: E1[2018-06-12]. http://dx.doi.org/10.1097/IAE.0000000000002225. DOI: 10.1097/IAE.0000000000002225. [published online ahead of print].
17. Ahmad MSZ, Carrim ZI. Multicolor scanning laser imaging in diabetic retinopathy[J]. Optom Vis Sci, 2017, 94(11): 1058-1061. DOI: 10.1097/OPX.0000000000001128.
18. The Diabetic Retinopathy Study Research Group. Indication for photocoagulation treatment of diabetic retinopathy: diabetic retinopathy study report NO.14[J]. Int Ophthalmol Clin, 1987, 27: 239-253. DOI: 10.1097/00004397-198702740-00004.
19. Muqit MM, Gray JC, Marcelino GR, et al. In vivo laser-tissue interactions and healing responses from 20-vs 100-millisecond pulse pascal photocoagulation burns[J]. Arch Ophthalmol, 2010, 128(4): 448-55. DOI: 10.1001/archophthalmol.2010.36.
20. Tan AC, Fleckenstein M, Schmitz-Valckenberg S, et al. Clinical application of multicolor imaging technology[J]. Ophthalmologica, 2016, 236(1): 8-18. DOI: 10.1159/000446857.
21. Gao SS, Liu G, Huang D, Jia Y. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Opt Lett, 2015, 40(10): 2305-2308. DOI: 10.1364/OL.40.002305.
22. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
23. Rispoli M, Lumbroso B, Jia YL, et al. Clinical guide to angio-OCT: non invasive, dyeless OCT angiography[M]. New Delhi: New Delhi Jaypee Brothers Medical Publishers, 2015: 2-3.
24. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. DOI: 10.1001/jamaophthalmol.2014.3616.
25. Tokayer J, Jia Y, Dhalla AH, et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 1909-1924. DOI: 10.1364/BOE.4.001909.
26. Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(5): 873-879. DOI: 10.1007/s00417-015-3143-7.
27. Lee J, Moon BG, Cho AR, et al. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response[J]. Ophthalmology, 2016, 123(11): 2368-2375. DOI: 10.1016/j.ophtha.2016.07.010.
28. Parravano M, De Geronimo D, Scarinci F, et al. Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection[J]. Am J Ophthalmol, 2017, 179: 90-96. DOI: 10.1016/j.ajo.2017.04.021.