1. |
Jacob A, Panicker J, Lythgoe D, et al. The epidemiology of neuromyelitis optica amongst adults in the merseyside county of united kingdom[J]. J Neurol, 2013, 260(8): 2134-2137. DOI: 10.1007/s00415-013-6926-y.
|
2. |
Houzen H, Niino M, Hirotani M. Increased prevalence, incidence, and female predominance of multiple sclerosis in northern Japan[J]. J Neurol Sci, 2012, 323(1-2): 117-122. DOI: 10.1016/j.jns.2012.08.032.
|
3. |
Bennett JL, Owens GP. Neuromyelitis optica: deciphering a complex immune-mediated astrocytopathy[J]. J Neuroophthalmol, 2017, 37(3): 291-299. DOI: 10.1097/WNO.0000000000000508.
|
4. |
赵朔, 徐全刚, 魏世辉. 视神经脊髓炎相关性视神经炎临床研究进展[J]. 中华眼底病杂志, 2015, 31(6): 605-608. DOI: 10.3760/cma.j.issn.1005-1015.2015.06.027.Zhao S, Xu QG, Wei SH, et al. Related clinical research progress of optic neuromyelitis-optic neuritis[J]. Chin J Ocul Fundus Dis, 2015, 31(6): 605-608. DOI: 10.3760/cma.j.issn.1005-1015.2015.06.027.
|
5. |
Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders[J]. Neurology, 2015, 85(2): 177-189. DOI: 10.1212/WNL.0000000000001729.
|
6. |
Hyun JW, Jeong IH, Joung A, et al. Evaluation of the 2015 diagnostic criteria for neuromyelitis optica spectrum disorder[J]. Neurology, 2016, 86(19): 1772-1779. DOI: 10.1212/WNL.0000000000002655.
|
7. |
Lennon V, Wingerchuk D, Kryzer T, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis[J]. Lancet, 2004, 364(9451): 2106-2112. DOI: 10.1016/S0140-6736(04)17551-X.
|
8. |
Kitley J, Woodhall M, Waters P, et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype[J]. Neurology, 2012, 79(12): 1273-1277. DOI: 10.1212/WNL.0b013e31826aac4e.
|
9. |
Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel[J]. J Exp Med, 2005, 202(4): 473-477. DOI: 10.1084/jem.20050304.
|
10. |
Waters PJ, Pittock SJ, Bennett JL, et al. Evaluation of aquaporin-4 antibody assays[J]. Clin Exp Neuroimmunol, 2014, 5(3): 290-303. DOI: 10.1111/cen3.12107.
|
11. |
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature[J]. Brain Pathol, 2013, 23(6): 661-683. DOI: 10.1111/bpa.12084.
|
12. |
Waters PJ, Mckeon A, Leite MI, et al. Serologic diagnosis of nmo a multicenter comparison of aquaporin-4-IgG assays[J]. Neurology, 2012, 78(9): 665-671. DOI: 10.1212/WNL.0b013e318248dec1.
|
13. |
Bennett JL, Lam C, Kalluri SR, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica[J]. Ann Neurol, 2009, 66(5): 617-629. DOI: 10.1002/ana.21802.
|
14. |
Bradl M, Misu T, Takahashi T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo[J]. Ann Neurol, 2009, 66(5): 630-643. DOI: 10.1002/ana.21837.
|
15. |
Kinoshita M, Nakatsuji Y, Kimura T, et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin[J]. Biochem Biophys Res Commun, 2009, 386(4): 623-627. DOI: 10.1016/j.bbrc.2009.06.085.
|
16. |
Saadoun S, Waters P, Bell BA, et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin g and human complement produces neuromyelitis optica lesions in mice[J]. Brain, 2010, 133(2): 349-361. DOI: 10.1093/brain/awp309.
|
17. |
Wrzos C, Winkler A, Metz I, et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions[J]. Acta Neuropathol, 2014, 127(4): 523-538. DOI: 10.1007/s00401-013-1220-8.
|
18. |
Höftberger R, Sepulveda M, Armangue T, et al. Antibodies to mog and aqp4 in adults with neuromyelitis optica and suspected limited forms of the disease[J]. Mult Scler, 2015, 21(7): 866-874. DOI: 10.1177/1352458514555785.
|
19. |
Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J]. Neurology, 2006, 66(10): 1485-1489. DOI: 10.1212/01.wnl.0000216139.44259.74.
|
20. |
Gao J, Pan W, Zhang H. Features of neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies[J]. JAMA Neurol, 2014, 71(7): 923-924. DOI: 10.1001/jamaneurol.2014.764.
|
21. |
Sato DK, Callegaro D, Lanapeixoto MA, et al. Distinction between mog antibody-positive and AQP4 antibody-positive NMO spectrum disorders[J]. Neurology, 2014, 82(6): 474-481. DOI: 10.1212/WNL.0000000000000101.
|
22. |
Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome[J]. J Neuroinflammation, 2016, 13(1): 280. DOI: 10.1186/s12974-016-0718-0.
|
23. |
van Pelt ED, Wong YY, Ketelslegers IA, et al. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4-IgG versus MOG-IgG seropositive cases in the Netherlands[J]. Eur J Neurol, 2016, 23(3): 580-587. DOI: 10.1111/ene.12898.
|
24. |
Akaishi T, Nakashima I, Takeshita T, et al. Lesion length of optic neuritis impacts visual prognosis in neuromyelitis optica[J]. J Neuroimmunol, 2016, 293: 28-33. DOI: 10.1016/j.jneuroim.2016.02.004.
|
25. |
Chalmoukou K, Alexopoulos H, Akrivou S, et al. Anti-mog antibodies are frequently associated with steroid-sensitive recurrent optic neuritis [J/OL]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(4): 131[2015-07-02]. http://europepmc.org/abstract/MED/26185777. DOI: 10.1212/NXI.0000000000000131.
|
26. |
Pache F, Zimmermann H, Mikolajczak J, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients[J]. J Neuroinflammation, 2016, 13(1): 282. DOI: 10.1186/s12974-016-0720-6.
|
27. |
Spadaro M, Gerdes LA, Mayer MC, et al. Histopathology and clinical course of mog-antibody-associated encephalomyelitis[J]. Ann Clin Transl Neurol, 2015, 2(3): 295-301. DOI: 10.1002/acn3.164.
|
28. |
Marie-Theres W, Wiebke M, Anne W, et al. Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases[J]. Cell Rep, 2016, 16(2): 314-322. DOI: 10.1016/j.celrep.2016.06.008.
|
29. |
Jones M, Huang H, Calabresi P, et al. Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica[J]. Acta Neuropathol Commun, 2015, 3(1): 1-8. DOI: 10.1186/s40478-015-0207-1.
|
30. |
Schanda K, Waters P, Holzer H, et al. Antibodies to aquaporin-1 are not present in neuromyelitis optica [J/OL]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(6): 160[2015-10-01]. http://europepmc.org/abstract/MED/26468473. DOI: 10.1212/NXI.0000000000000160.
|
31. |
Suzuki N, Takahashi T, Aoki M, et al. Neuromyelitis optica preceded by hyperckemia episode[J]. Neurology, 2010, 74(19): 1543-1545. DOI: 10.1212/WNL.0b013e3181dd445b.
|
32. |
Malik R, Lewis A, Cree BAC, et al. Transient hyperckemia in the setting of neuromyelitis optica (NMO)[J]. Muscle Nerve, 2014, 50(5): 859-862. DOI: 10.1002/mus.24298.
|
33. |
He D, Li Y, Dai Q, et al. Myopathy associated with neuromyelitis optica spectrum disorders[J]. Int J Neurosci, 2016, 126(10): 863-866. DOI: 10.3109/00207454.2015.1113175.
|
34. |
Asavapanumas N, Verkman AS. Neuromyelitis optica pathology in rats following intraperitoneal injection of nmo-IgG and intracerebral needle injury[J]. Acta Neuropathol Commun, 2014, 2(1): 48. DOI: 10.1186/2051-5960-2-48.
|
35. |
Saadoun S, Papadopoulos MC. Role of membrane complement regulators in neuromyelitis optica[J]. Mult Scler, 2015, 21(13): 1644-1654. DOI: 10.1177/1352458515571446.
|
36. |
Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59[J]. J Autoimmun, 2014, 53: 67-77. DOI: 10.1016/j.jaut.2014.02.011.
|
37. |
Phuan PW, Ratelade J, Rossi A, et al. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays[J]. J Biol Chem, 2012, 287(17): 13829-13839. DOI: 10.1074/jbc.M112.344325.
|
38. |
Matiello M, Schaefer-Klein J, Sun D, et al. Aquaporin 4 expression and tissue susceptibility to neuromyelitis optica[J]. JAMA Neurol, 2013, 70(9): 1118-1125. DOI: 10.1001/jamaneurol.2013.3124.
|
39. |
Oklinski MK, Lim JS, Choi HJ, et al. Immunolocalization of water channel proteins AQP1 and AQP4 in rat spinal cord[J]. J Histochem Cytochem, 2014, 62(8): 598-611. DOI: 10.1369/0022155414537495.
|
40. |
Smith A, Verkman A. Superresolution imaging of aquaporin-4 cluster size in antibody-stained paraffin brain sections[J]. Biophys J, 2015, 109(12): 2511-2522. DOI: 10.1016/j.bpj.2015.10.047.
|
41. |
Sun M, Wang J, Zhou Y, et al. Isotetrandrine reduces astrocyte cytotoxicity in neuromyelitis optica by blocking the binding of NMO-IgG to aquaporin 4[J]. Neuroimmunomodulation, 2016, 23(2): 98-108. DOI: 10.1159/000444530.
|
42. |
Raveendra B, Hao W, Baccala R, et al. Discovery of peptoid ligands for anti-aquaporin 4 antibodies[J]. Chem Biol, 2013, 20(3): 351-359. DOI: 10.1016/j.chembiol.2012.12.009.
|
43. |
Tradtrantip L, Zhang H, Saadoun S, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica[J]. Ann Neurol, 2012, 71(3): 314-322. DOI: 10.1002/ana.22657.
|
44. |
Zhang H, Bennett JL, Verkman AS. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms[J]. Ann Neurol, 2011, 70(6): 943-954. DOI: 10.1002/ana.22551.
|
45. |
Rossi A, Ratelade J, Papadopoulos MC, et al. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly[J]. Glia, 2012, 60(12): 2027-2039. DOI: 10.1002/glia.22417.
|
46. |
Ratelade J, Asavapanumas N, Ritchie AM, et al. Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica[J]. Acta Neuropathol, 2013, 126(5): 699-709. DOI: 10.1007/s00401-013-1172-z.
|
47. |
Asavapanumas N, Ratelade J, Verkman AS. Unique neuromyelitis optica pathology produced in naïve rats by intracerebral administration of NMO-IgG[J]. Acta Neuropathol, 2014, 127(4): 539-551. DOI: 10.1007/s00401-013-1204-8.
|
48. |
Levy M, Mealy MA. Purified human c1-esterase inhibitor is safe in acute relapses of neuromyelitis optica [J/OL]. Neurol Neuroimmunol Neuroinflamm, 2014, 1(1): 5[2014-04-24]. http://europepmc.org/abstract/MED/25340061. DOI: 10.1212/NXI.0000000000000005.
|
49. |
Tradtrantip L, Asavapanumas N, Phuan PW, et al. Potential therapeutic benefit of C1-esterase inhibitor in neuromyelitis optica evaluated in vitro and in an experimental rat model [J/OL]. PLoS One, 2014, 9(9): 106824[2014-09-05]. http://dx.plos.org/10.1371/journal.pone.0106824. DOI: 10.1371/journal.pone.0106824.
|
50. |
Phuan PW, Zhang H, Asavapanumas N, et al. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica[J]. Acta Neuropathol, 2013, 125(6): 829-840. DOI: 10.1007/s00401-013-1128-3.
|
51. |
Pittock SJ, Lennon VA, Mckeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study[J]. Lancet Neurol, 2013, 12(6): 554-562. DOI: 10.1016/S1474-4422(13)70076-0.
|
52. |
Herges K, de Jong BA, Kolkowitz I, et al. Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein[J]. Mult Scler, 2012, 18(4): 398-408. DOI: 10.1177/1352458512440060.
|
53. |
Zhang H, Verkman AS. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica[J]. J Clin Invest, 2013, 123(5): 2306-2316. DOI: 10.1172/JCI67554.
|
54. |
Anthony RM, Wermeling F, Karlsson MCI, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG[J]. Proc Natl Acad Sci USA, 2008, 105(50): 19571-19578. DOI: 10.1073/pnas.0810163105.
|
55. |
Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases[J]. N Engl J Med, 2013, 369(23): 2236-2251. DOI: 10.1056/NEJMra1215233.
|
56. |
Schattling B, Steinbach K, Thies E, et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis[J]. Nature Medicine, 2012, 18(12): 1805-1811. DOI: 10.1038/nm.3015.
|