中华眼底病杂志

中华眼底病杂志

视神经脊髓炎的相关研究进展

查看全文

视神经脊髓炎(NMO)是一种主要累及视神经和脊髓的中枢神经系统(CNS)自身免疫性炎症性疾病,其复发率高、预后差;其中NMO相关性视神经炎是引起患者视力严重下降的常见神经眼科疾病。水通道蛋白4(AQP4)抗体是NMO的一种特异性和致病性自身抗体。尽管AQP4可以在多个组织中表达,但NMO病变主要局限于CNS。目前NMO的治疗以皮质类固醇联合其他免疫抑制剂为主,以达到减少复发频率及急性发作严重程度的目的。多途径多视角的基础研究提高了我们对NMO发病机制的认识,有助于临床深入了解免疫机制和非免疫机制。临床治疗NMO的方法应该包括针对发病过程中各种途径的药物,而如何把这些药物从实验室转化到临床,并在临床研究的基础上确定更为安全有效的治疗方法,减轻患者CNS损害和维持视觉功能是今后研究值得探讨的重要课题。

Neuromyelitis optica (NMO) is an autoimmune inflammatory diseases of the central nervous systems (CNS) mainly affecting the optic nerves and spinal cord. It has the characteristics of high recurrence rate and poor prognosis. NMO related optic neuritis is a common neuro-ophthalmic disease which often results in permanent visual loss or even blindness. Aquaporin 4 (AQP4) antibody is a specific and pathogenic autoantibody in NMO patients. Although AQP4 is expressed in multiple tissues, NMO pathology is remarkably limited to the CNS. Corticosteroids and other immunosuppressive drugs are the standard managements for NMO patients, in order to reduce the relapses and the severity of the acute attack. Multiple avenues of investigation in the laboratory have significantly advanced our understanding of NMO pathophysiology, which is helpful for our understanding of immunologic and nonimmunologic mechanisms. Many offer significant means for NMO therapy by selectively targeting pathways. In the future, moving these agents from the bench to the bedside offers the opportunity to identify safe and effective therapies that limit CNS injury and preserve visual function.

关键词: 视神经脊髓炎; 水通道蛋白质4; 视神经炎; 综述

Key words: Neuromyelitis optica; Aquaporin 4; Optic neuritis; Review

引用本文: 宋宏鲁, 魏世辉. 视神经脊髓炎的相关研究进展. 中华眼底病杂志, 2019, 35(1): 99-102. doi: 10.3760/cma.j.issn.1005-1015.2019.01.024 复制

1. Jacob A, Panicker J, Lythgoe D, et al. The epidemiology of neuromyelitis optica amongst adults in the merseyside county of united kingdom[J]. J Neurol, 2013, 260(8): 2134-2137. DOI: 10.1007/s00415-013-6926-y.
2. Houzen H, Niino M, Hirotani M. Increased prevalence, incidence, and female predominance of multiple sclerosis in northern Japan[J]. J Neurol Sci, 2012, 323(1-2): 117-122. DOI: 10.1016/j.jns.2012.08.032.
3. Bennett JL, Owens GP. Neuromyelitis optica: deciphering a complex immune-mediated astrocytopathy[J]. J Neuroophthalmol, 2017, 37(3): 291-299. DOI: 10.1097/WNO.0000000000000508.
4. 赵朔, 徐全刚, 魏世辉. 视神经脊髓炎相关性视神经炎临床研究进展[J]. 中华眼底病杂志, 2015, 31(6): 605-608. DOI: 10.3760/cma.j.issn.1005-1015.2015.06.027.Zhao S, Xu QG, Wei SH, et al. Related clinical research progress of optic neuromyelitis-optic neuritis[J]. Chin J Ocul Fundus Dis, 2015, 31(6): 605-608. DOI: 10.3760/cma.j.issn.1005-1015.2015.06.027.
5. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders[J]. Neurology, 2015, 85(2): 177-189. DOI: 10.1212/WNL.0000000000001729.
6. Hyun JW, Jeong IH, Joung A, et al. Evaluation of the 2015 diagnostic criteria for neuromyelitis optica spectrum disorder[J]. Neurology, 2016, 86(19): 1772-1779. DOI: 10.1212/WNL.0000000000002655.
7. Lennon V, Wingerchuk D, Kryzer T, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis[J]. Lancet, 2004, 364(9451): 2106-2112. DOI: 10.1016/S0140-6736(04)17551-X.
8. Kitley J, Woodhall M, Waters P, et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype[J]. Neurology, 2012, 79(12): 1273-1277. DOI: 10.1212/WNL.0b013e31826aac4e.
9. Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel[J]. J Exp Med, 2005, 202(4): 473-477. DOI: 10.1084/jem.20050304.
10. Waters PJ, Pittock SJ, Bennett JL, et al. Evaluation of aquaporin-4 antibody assays[J]. Clin Exp Neuroimmunol, 2014, 5(3): 290-303. DOI: 10.1111/cen3.12107.
11. Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature[J]. Brain Pathol, 2013, 23(6): 661-683. DOI: 10.1111/bpa.12084.
12. Waters PJ, Mckeon A, Leite MI, et al. Serologic diagnosis of nmo a multicenter comparison of aquaporin-4-IgG assays[J]. Neurology, 2012, 78(9): 665-671. DOI: 10.1212/WNL.0b013e318248dec1.
13. Bennett JL, Lam C, Kalluri SR, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica[J]. Ann Neurol, 2009, 66(5): 617-629. DOI: 10.1002/ana.21802.
14. Bradl M, Misu T, Takahashi T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo[J]. Ann Neurol, 2009, 66(5): 630-643. DOI: 10.1002/ana.21837.
15. Kinoshita M, Nakatsuji Y, Kimura T, et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin[J]. Biochem Biophys Res Commun, 2009, 386(4): 623-627. DOI: 10.1016/j.bbrc.2009.06.085.
16. Saadoun S, Waters P, Bell BA, et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin g and human complement produces neuromyelitis optica lesions in mice[J]. Brain, 2010, 133(2): 349-361. DOI: 10.1093/brain/awp309.
17. Wrzos C, Winkler A, Metz I, et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions[J]. Acta Neuropathol, 2014, 127(4): 523-538. DOI: 10.1007/s00401-013-1220-8.
18. Höftberger R, Sepulveda M, Armangue T, et al. Antibodies to mog and aqp4 in adults with neuromyelitis optica and suspected limited forms of the disease[J]. Mult Scler, 2015, 21(7): 866-874. DOI: 10.1177/1352458514555785.
19. Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J]. Neurology, 2006, 66(10): 1485-1489. DOI: 10.1212/01.wnl.0000216139.44259.74.
20. Gao J, Pan W, Zhang H. Features of neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies[J]. JAMA Neurol, 2014, 71(7): 923-924. DOI: 10.1001/jamaneurol.2014.764.
21. Sato DK, Callegaro D, Lanapeixoto MA, et al. Distinction between mog antibody-positive and AQP4 antibody-positive NMO spectrum disorders[J]. Neurology, 2014, 82(6): 474-481. DOI: 10.1212/WNL.0000000000000101.
22. Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome[J]. J Neuroinflammation, 2016, 13(1): 280. DOI: 10.1186/s12974-016-0718-0.
23. van Pelt ED, Wong YY, Ketelslegers IA, et al. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4-IgG versus MOG-IgG seropositive cases in the Netherlands[J]. Eur J Neurol, 2016, 23(3): 580-587. DOI: 10.1111/ene.12898.
24. Akaishi T, Nakashima I, Takeshita T, et al. Lesion length of optic neuritis impacts visual prognosis in neuromyelitis optica[J]. J Neuroimmunol, 2016, 293: 28-33. DOI: 10.1016/j.jneuroim.2016.02.004.
25. Chalmoukou K, Alexopoulos H, Akrivou S, et al. Anti-mog antibodies are frequently associated with steroid-sensitive recurrent optic neuritis [J/OL]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(4): 131[2015-07-02]. http://europepmc.org/abstract/MED/26185777. DOI: 10.1212/NXI.0000000000000131.
26. Pache F, Zimmermann H, Mikolajczak J, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients[J]. J Neuroinflammation, 2016, 13(1): 282. DOI: 10.1186/s12974-016-0720-6.
27. Spadaro M, Gerdes LA, Mayer MC, et al. Histopathology and clinical course of mog-antibody-associated encephalomyelitis[J]. Ann Clin Transl Neurol, 2015, 2(3): 295-301. DOI: 10.1002/acn3.164.
28. Marie-Theres W, Wiebke M, Anne W, et al. Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases[J]. Cell Rep, 2016, 16(2): 314-322. DOI: 10.1016/j.celrep.2016.06.008.
29. Jones M, Huang H, Calabresi P, et al. Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica[J]. Acta Neuropathol Commun, 2015, 3(1): 1-8. DOI: 10.1186/s40478-015-0207-1.
30. Schanda K, Waters P, Holzer H, et al. Antibodies to aquaporin-1 are not present in neuromyelitis optica [J/OL]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(6): 160[2015-10-01]. http://europepmc.org/abstract/MED/26468473. DOI: 10.1212/NXI.0000000000000160.
31. Suzuki N, Takahashi T, Aoki M, et al. Neuromyelitis optica preceded by hyperckemia episode[J]. Neurology, 2010, 74(19): 1543-1545. DOI: 10.1212/WNL.0b013e3181dd445b.
32. Malik R, Lewis A, Cree BAC, et al. Transient hyperckemia in the setting of neuromyelitis optica (NMO)[J]. Muscle Nerve, 2014, 50(5): 859-862. DOI: 10.1002/mus.24298.
33. He D, Li Y, Dai Q, et al. Myopathy associated with neuromyelitis optica spectrum disorders[J]. Int J Neurosci, 2016, 126(10): 863-866. DOI: 10.3109/00207454.2015.1113175.
34. Asavapanumas N, Verkman AS. Neuromyelitis optica pathology in rats following intraperitoneal injection of nmo-IgG and intracerebral needle injury[J]. Acta Neuropathol Commun, 2014, 2(1): 48. DOI: 10.1186/2051-5960-2-48.
35. Saadoun S, Papadopoulos MC. Role of membrane complement regulators in neuromyelitis optica[J]. Mult Scler, 2015, 21(13): 1644-1654. DOI: 10.1177/1352458515571446.
36. Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59[J]. J Autoimmun, 2014, 53: 67-77. DOI: 10.1016/j.jaut.2014.02.011.
37. Phuan PW, Ratelade J, Rossi A, et al. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays[J]. J Biol Chem, 2012, 287(17): 13829-13839. DOI: 10.1074/jbc.M112.344325.
38. Matiello M, Schaefer-Klein J, Sun D, et al. Aquaporin 4 expression and tissue susceptibility to neuromyelitis optica[J]. JAMA Neurol, 2013, 70(9): 1118-1125. DOI: 10.1001/jamaneurol.2013.3124.
39. Oklinski MK, Lim JS, Choi HJ, et al. Immunolocalization of water channel proteins AQP1 and AQP4 in rat spinal cord[J]. J Histochem Cytochem, 2014, 62(8): 598-611. DOI: 10.1369/0022155414537495.
40. Smith A, Verkman A. Superresolution imaging of aquaporin-4 cluster size in antibody-stained paraffin brain sections[J]. Biophys J, 2015, 109(12): 2511-2522. DOI: 10.1016/j.bpj.2015.10.047.
41. Sun M, Wang J, Zhou Y, et al. Isotetrandrine reduces astrocyte cytotoxicity in neuromyelitis optica by blocking the binding of NMO-IgG to aquaporin 4[J]. Neuroimmunomodulation, 2016, 23(2): 98-108. DOI: 10.1159/000444530.
42. Raveendra B, Hao W, Baccala R, et al. Discovery of peptoid ligands for anti-aquaporin 4 antibodies[J]. Chem Biol, 2013, 20(3): 351-359. DOI: 10.1016/j.chembiol.2012.12.009.
43. Tradtrantip L, Zhang H, Saadoun S, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica[J]. Ann Neurol, 2012, 71(3): 314-322. DOI: 10.1002/ana.22657.
44. Zhang H, Bennett JL, Verkman AS. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms[J]. Ann Neurol, 2011, 70(6): 943-954. DOI: 10.1002/ana.22551.
45. Rossi A, Ratelade J, Papadopoulos MC, et al. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly[J]. Glia, 2012, 60(12): 2027-2039. DOI: 10.1002/glia.22417.
46. Ratelade J, Asavapanumas N, Ritchie AM, et al. Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica[J]. Acta Neuropathol, 2013, 126(5): 699-709. DOI: 10.1007/s00401-013-1172-z.
47. Asavapanumas N, Ratelade J, Verkman AS. Unique neuromyelitis optica pathology produced in naïve rats by intracerebral administration of NMO-IgG[J]. Acta Neuropathol, 2014, 127(4): 539-551. DOI: 10.1007/s00401-013-1204-8.
48. Levy M, Mealy MA. Purified human c1-esterase inhibitor is safe in acute relapses of neuromyelitis optica [J/OL]. Neurol Neuroimmunol Neuroinflamm, 2014, 1(1): 5[2014-04-24]. http://europepmc.org/abstract/MED/25340061. DOI: 10.1212/NXI.0000000000000005.
49. Tradtrantip L, Asavapanumas N, Phuan PW, et al. Potential therapeutic benefit of C1-esterase inhibitor in neuromyelitis optica evaluated in vitro and in an experimental rat model [J/OL]. PLoS One, 2014, 9(9): 106824[2014-09-05]. http://dx.plos.org/10.1371/journal.pone.0106824. DOI: 10.1371/journal.pone.0106824.
50. Phuan PW, Zhang H, Asavapanumas N, et al. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica[J]. Acta Neuropathol, 2013, 125(6): 829-840. DOI: 10.1007/s00401-013-1128-3.
51. Pittock SJ, Lennon VA, Mckeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study[J]. Lancet Neurol, 2013, 12(6): 554-562. DOI: 10.1016/S1474-4422(13)70076-0.
52. Herges K, de Jong BA, Kolkowitz I, et al. Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein[J]. Mult Scler, 2012, 18(4): 398-408. DOI: 10.1177/1352458512440060.
53. Zhang H, Verkman AS. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica[J]. J Clin Invest, 2013, 123(5): 2306-2316. DOI: 10.1172/JCI67554.
54. Anthony RM, Wermeling F, Karlsson MCI, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG[J]. Proc Natl Acad Sci USA, 2008, 105(50): 19571-19578. DOI: 10.1073/pnas.0810163105.
55. Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases[J]. N Engl J Med, 2013, 369(23): 2236-2251. DOI: 10.1056/NEJMra1215233.
56. Schattling B, Steinbach K, Thies E, et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis[J]. Nature Medicine, 2012, 18(12): 1805-1811. DOI: 10.1038/nm.3015.